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phc

http://phpcompiler.org

Ahead-of-time compiler for PHP

Edsko de Vries, John Gilbert, Paul Biggar

BSD license

Latest release: 0.2.0.3 - compiles non-OO

svn trunk: compiles most OO
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1. BSD licence useful
since its easy to
extend

2. Well engineered -
turns out you dont
get a phd for that

phc

http://phpcompiler.org

Ahead-of-time compiler for PHP

Edsko de Vries, John Gilbert, Paul Biggar

BSD license

Latest release: 0.2.0.3 - compiles non-OO

svn trunk: compiles most OO

http://phpcompiler.org
http://phpcompiler.org
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1. maketea
2. All can be
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$x = ($TLE1 + $d);

?>

Trinity College Dublin 9

1. 3AC
2. Still PHP

HIR

<?php

$x = $a + $b + $c + $d;

?>
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$TLE0 = ($a + $b);

$TLE1 = ($TLE0 + $c);

$x = ($TLE1 + $d);

?>
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<?php

while ($cond)

echo "hello", "world!";

?>

<?php

L7:

$TLE0 = !$cond;

if ($TLE0) goto L3 else goto L6;

L6:

print(’hello’);

print(’world!’);

goto L7;

L3:

?>
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1. Not PHP
2. Gotos

MIR

<?php

while ($cond)

echo "hello", "world!";

?>

<?php

L7:

$TLE0 = !$cond;

if ($TLE0) goto L3 else goto L6;

L6:

print(’hello’);

print(’world!’);

goto L7;

L3:

?>
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1. Visitor pattern
2. We use it for

testing a lot
3. Manual documents

it well
4.

Plugins

http://phpcompiler.org/doc/latest/devmanual.html
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XML
<?xml version="1.0"?>

<AST:PHP_script xmlns:AST="http://www.phpcompiler.org/phc-1.1">

<AST:Statement_list>

<AST:Eval_expr>

<AST:Method_invocation>

<AST:Target xsi:nil="true" />

<AST:METHOD_NAME>

<value>echo</value>

</AST:METHOD_NAME>

<AST:Actual_parameter_list>

<AST:Actual_parameter>

<bool><!-- is_ref -->false</bool>

<AST:STRING>

<value>hello</value>

</AST:STRING>

</AST:Actual_parameter>

<AST:Actual_parameter>

<bool><!-- is_ref -->false</bool>

<AST:STRING>

<value>world!</value>

</AST:STRING>

</AST:Actual_parameter>

</AST:Actual_parameter_list>

</AST:Method_invocation>

</AST:Eval_expr>

<AST:Nop>

</AST:Nop>

</AST:Statement_list>

</AST:PHP_script>
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Department of Computer Science and Statistics
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1. Correctness
2. Large libraries
3. Odd features
4. No spec

SAC 2009

A Practical Solution for Scripting Language

Compilers

Paul Biggar, Edsko de Vries and David Gregg

Department of Computer Science and Statistics
Trinity College Dublin

ACM Symposium on Applied Computing - PL track

12th March, 2009
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Undefined

The PHP group claim that they have the final say in

the specification of PHP. This group’s specification is

an implementation, and there is no prose specification

or agreed validation suite. There are alternate

implementations [...] that claim to be compatible (they

don’t say what this means) with some version of PHP.

D. M. Jones. Forms of language specification: Examples from

commonly used computer languages. ISO/IEC
JTC1/SC22/OWG/N0121, February 2008.
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Batteries included

Jeff Atwood, Coding Horror, May 20th, 2008

http://www.codinghorror.com/blog/archives/001119.html
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1. all written in C, not
PHP

2. Mike Furr earlier:
1000
methods/classes in
C

3. 4870 functions,
1000 methods

Batteries included

Jeff Atwood, Coding Horror, May 20th, 2008

http://www.codinghorror.com/blog/archives/001119.html
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Change between releases

<?php

var_dump (0x9fa0ff0b);

?>

PHP 5.2.1 (32-bit)

int(2147483647)

PHP 5.2.3 (32-bit)

float(2678128395)
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eval ($argv[1]);
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1. scripting langs are
typically made for
interpreters

2. can do source
inclusion at
compile time

3. same mechanism
for plugins

Run-time code generation

<?php

eval ($argv[1]);

?>

<?php

include ("mylib.php");

...

include ("plugin.php");

...

?>
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1. RTCG
2. Functions
3. Changes between

releases: also use
C API at
compile-time

Use C API
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More detail

PHP zval
Python PyObject
Ruby VALUE
Lua TValue

H. Muhammad and R. Ierusalimschy. C APIs in extension and

extensible languages. Journal of Universal Computer Science,

13(6):839–853, 2007.
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1. C API is just zval +
macros and
functions

2. Use (target) PHP’s
C API at run-time

More detail

PHP zval
Python PyObject
Ruby VALUE
Lua TValue

H. Muhammad and R. Ierusalimschy. C APIs in extension and

extensible languages. Journal of Universal Computer Science,

13(6):839–853, 2007.
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Simple listings: $i = 0

// $i = 0;

{

zval* p_i;

php_hash_find (LOCAL_ST, "i", 5863374, p_i);

php_destruct (p_i);

php_allocate (p_i);

ZVAL_LONG (*p_i, 0);

}
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Simple listings: $i = 0

// $i = 0;

{

zval* p_i;

php_hash_find (LOCAL_ST, "i", 5863374, p_i);

php_destruct (p_i);
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Example: $i = 0

// $i = 0;

{

if (local_i == NULL)

{

local_i = EG (uninitialized_zval_ptr);

local_i->refcount++;

}

zval **p_lhs = &local_i;

zval *value;

if ((*p_lhs)->is_ref)

{

// Always overwrite the current value

value = *p_lhs;

zval_dtor (value);

}

else

{

ALLOC_INIT_ZVAL (value);

zval_ptr_dtor (p_lhs);

*p_lhs = value;

}

ZVAL_LONG (value, 0);

}
Trinity College Dublin 25

Example: $i = 0

// $i = 0;

{

if (local_i == NULL)

{

local_i = EG (uninitialized_zval_ptr);

local_i->refcount++;

}

zval **p_lhs = &local_i;

zval *value;

if ((*p_lhs)->is_ref)

{

// Always overwrite the current value

value = *p_lhs;

zval_dtor (value);

}

else

{

ALLOC_INIT_ZVAL (value);

zval_ptr_dtor (p_lhs);

*p_lhs = value;

}

ZVAL_LONG (value, 0);

}
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Example: $i = $j
// $i = $j;

{

if (local_i == NULL)

{

local_i = EG (uninitialized_zval_ptr);

local_i->refcount++;

}

zval **p_lhs = &local_i;

zval *rhs;

if (local_j == NULL)

rhs = EG (uninitialized_zval_ptr);

else

rhs = local_j;

if (*p_lhs != rhs)

{

if ((*p_lhs)->is_ref)

{

// First, call the destructor to remove any data structures

// associated with lhs that will now be overwritten

zval_dtor (*p_lhs);

// Overwrite LHS

(*p_lhs)->value = rhs->value;

(*p_lhs)->type = rhs->type;

zval_copy_ctor (*p_lhs);

}

else

{

zval_ptr_dtor (p_lhs);

if (rhs->is_ref)

{

// Take a copy of RHS for LHS

*p_lhs = zvp_clone_ex (rhs);

}

else

{

// Share a copy

rhs->refcount++;

*p_lhs = rhs;

}

}

}

} Trinity College Dublin 26

Example: $i = $j
// $i = $j;

{

if (local_i == NULL)

{

local_i = EG (uninitialized_zval_ptr);

local_i->refcount++;

}

zval **p_lhs = &local_i;

zval *rhs;

if (local_j == NULL)

rhs = EG (uninitialized_zval_ptr);

else

rhs = local_j;

if (*p_lhs != rhs)

{

if ((*p_lhs)->is_ref)

{

// First, call the destructor to remove any data structures

// associated with lhs that will now be overwritten

zval_dtor (*p_lhs);

// Overwrite LHS

(*p_lhs)->value = rhs->value;

(*p_lhs)->type = rhs->type;

zval_copy_ctor (*p_lhs);

}

else

{

zval_ptr_dtor (p_lhs);

if (rhs->is_ref)

{

// Take a copy of RHS for LHS

*p_lhs = zvp_clone_ex (rhs);

}

else

{

// Share a copy

rhs->refcount++;

*p_lhs = rhs;

}

}

}

}



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Example: printf ($f)
static zend_fcall_info printf_fci;

static zend_fcall_info_cache printf_fcic = { 0, NULL, NULL, NULL };

// printf($f);

{

if (!printf_fcic->initialized)

{

zval fn;

INIT_PZVAL (&fn);

ZVAL_STRING (&fn, "printf", 0);

int result = zend_fcall_info_init (&fn, &printf_fci, &printf_fcic TSRMLS_CC);

if (result != SUCCESS)

{

phc_setup_error (1, "listings_source.php", 8, NULL TSRMLS_CC);

php_error_docref (NULL TSRMLS_CC, E_ERROR,

"Call to undefined function %s()", function_name);

}

}

zend_function *signature = printf_fcic.function_handler;

zend_arg_info *arg_info = signature->common.arg_info; // optional

int by_ref[1];

int abr_index = 0;

// TODO: find names to replace index

if (arg_info)

{

by_ref[abr_index] = arg_info->pass_by_reference;

arg_info++;

}

else

by_ref[abr_index] = signature->common.pass_rest_by_reference;

abr_index++;

// Setup array of arguments

// TODO: i think arrays of size 0 is an error

int destruct[1];

zval *args[1];

zval **args_ind[1];

int af_index = 0;

destruct[af_index] = 0;

if (by_ref[af_index])

{

if (local_f == NULL)

{

local_f = EG (uninitialized_zval_ptr);

local_f->refcount++;

}

zval **p_arg = &local_f;

// We don’t need to restore ->is_ref afterwards,

// because the called function will reduce the

// refcount of arg on return, and will reset is_ref to

// 0 when refcount drops to 1. If the refcount does

// not drop to 1 when the function returns, but we did

// set is_ref to 1 here, that means that is_ref must

// already have been 1 to start with (since if it had

// not, that means that the variable would have been

// in a copy-on-write set, and would have been

// seperated above).

(*p_arg)->is_ref = 1;

args_ind[af_index] = p_arg;

assert (!in_copy_on_write (*args_ind[af_index]));

args[af_index] = *args_ind[af_index];

}

else

{

zval *arg;

if (local_f == NULL)

arg = EG (uninitialized_zval_ptr);

else

arg = local_f;

args[af_index] = fetch_var_arg (arg, &destruct[af_index]);

if (arg->is_ref)

{

// We dont separate since we don’t own one of ARG’s references.

arg = zvp_clone_ex (arg);

destruct[af_index] = 1;

// It seems we get incorrect refcounts without this.

// TODO This decreases the refcount to zero, which seems wrong,

// but gives the right answer. We should look at how zend does

// this.

arg->refcount--;

}

args[af_index] = arg;

args_ind[af_index] = &args[af_index];

}

af_index++;

phc_setup_error (1, "listings_source.php", 8, NULL TSRMLS_CC);

// save existing parameters, in case of recursion

int param_count_save = printf_fci.param_count;

zval ***params_save = printf_fci.params;

zval **retval_save = printf_fci.retval_ptr_ptr;

zval *rhs = NULL;

// set up params

printf_fci.params = args_ind;

printf_fci.param_count = 1;

printf_fci.retval_ptr_ptr = &rhs;

// call the function

int success = zend_call_function (&printf_fci, &printf_fcic TSRMLS_CC);

assert (success == SUCCESS);

// restore params

printf_fci.params = params_save;

printf_fci.param_count = param_count_save;

printf_fci.retval_ptr_ptr = retval_save;

// unset the errors

phc_setup_error (0, NULL, 0, NULL TSRMLS_CC);

int i;

for (i = 0; i < 1; i++)

{

if (destruct[i])

{

assert (destruct[i]);

zval_ptr_dtor (args_ind[i]);

}

}

// When the Zend engine returns by reference, it allocates a zval into

// retval_ptr_ptr. To return by reference, the callee writes into the

// retval_ptr_ptr, freeing the allocated value as it does. (Note, it may

// not actually return anything). So the zval returned - whether we return

// it, or it is the allocated zval - has a refcount of 1.

// The caller is responsible for cleaning that up (note, this is unaffected

// by whether it is added to some COW set).

// For reasons unknown, the Zend API resets the refcount and is_ref fields

// of the return value after the function returns (unless the callee is

// interpreted). If the function is supposed to return by reference, this

// loses the refcount. This only happens when non-interpreted code is

// called. We work around it, when compiled code is called, by saving the

// refcount into SAVED_REFCOUNT, in the return statement. The downside is

// that we may create an error if our code is called by a callback, and

// returns by reference, and the callback returns by reference. At least

// this is an obscure case.

if (signature->common.return_reference

&& signature->type != ZEND_USER_FUNCTION)

{

assert (rhs != EG (uninitialized_zval_ptr));

rhs->is_ref = 1;

if (saved_refcount != 0)

{

rhs->refcount = saved_refcount;

}

rhs->refcount++;

}

saved_refcount = 0; // for ’obscure cases’

zval_ptr_dtor (&rhs);

if (signature->common.return_reference

&& signature->type != ZEND_USER_FUNCTION)

zval_ptr_dtor (&rhs);

} Trinity College Dublin 27

Example: printf ($f)
static zend_fcall_info printf_fci;

static zend_fcall_info_cache printf_fcic = { 0, NULL, NULL, NULL };

// printf($f);

{

if (!printf_fcic->initialized)

{

zval fn;

INIT_PZVAL (&fn);

ZVAL_STRING (&fn, "printf", 0);

int result = zend_fcall_info_init (&fn, &printf_fci, &printf_fcic TSRMLS_CC);

if (result != SUCCESS)

{

phc_setup_error (1, "listings_source.php", 8, NULL TSRMLS_CC);

php_error_docref (NULL TSRMLS_CC, E_ERROR,

"Call to undefined function %s()", function_name);

}

}

zend_function *signature = printf_fcic.function_handler;

zend_arg_info *arg_info = signature->common.arg_info; // optional

int by_ref[1];

int abr_index = 0;

// TODO: find names to replace index

if (arg_info)

{

by_ref[abr_index] = arg_info->pass_by_reference;

arg_info++;

}

else

by_ref[abr_index] = signature->common.pass_rest_by_reference;

abr_index++;

// Setup array of arguments

// TODO: i think arrays of size 0 is an error

int destruct[1];

zval *args[1];

zval **args_ind[1];

int af_index = 0;

destruct[af_index] = 0;

if (by_ref[af_index])

{

if (local_f == NULL)

{

local_f = EG (uninitialized_zval_ptr);

local_f->refcount++;

}

zval **p_arg = &local_f;

// We don’t need to restore ->is_ref afterwards,

// because the called function will reduce the

// refcount of arg on return, and will reset is_ref to

// 0 when refcount drops to 1. If the refcount does

// not drop to 1 when the function returns, but we did

// set is_ref to 1 here, that means that is_ref must

// already have been 1 to start with (since if it had

// not, that means that the variable would have been

// in a copy-on-write set, and would have been

// seperated above).

(*p_arg)->is_ref = 1;

args_ind[af_index] = p_arg;

assert (!in_copy_on_write (*args_ind[af_index]));

args[af_index] = *args_ind[af_index];

}

else

{

zval *arg;

if (local_f == NULL)

arg = EG (uninitialized_zval_ptr);

else

arg = local_f;

args[af_index] = fetch_var_arg (arg, &destruct[af_index]);

if (arg->is_ref)

{

// We dont separate since we don’t own one of ARG’s references.

arg = zvp_clone_ex (arg);

destruct[af_index] = 1;

// It seems we get incorrect refcounts without this.

// TODO This decreases the refcount to zero, which seems wrong,

// but gives the right answer. We should look at how zend does

// this.

arg->refcount--;

}

args[af_index] = arg;

args_ind[af_index] = &args[af_index];

}

af_index++;

phc_setup_error (1, "listings_source.php", 8, NULL TSRMLS_CC);

// save existing parameters, in case of recursion

int param_count_save = printf_fci.param_count;

zval ***params_save = printf_fci.params;

zval **retval_save = printf_fci.retval_ptr_ptr;

zval *rhs = NULL;

// set up params

printf_fci.params = args_ind;

printf_fci.param_count = 1;

printf_fci.retval_ptr_ptr = &rhs;

// call the function

int success = zend_call_function (&printf_fci, &printf_fcic TSRMLS_CC);

assert (success == SUCCESS);

// restore params

printf_fci.params = params_save;

printf_fci.param_count = param_count_save;

printf_fci.retval_ptr_ptr = retval_save;

// unset the errors

phc_setup_error (0, NULL, 0, NULL TSRMLS_CC);

int i;

for (i = 0; i < 1; i++)

{

if (destruct[i])

{

assert (destruct[i]);

zval_ptr_dtor (args_ind[i]);

}

}

// When the Zend engine returns by reference, it allocates a zval into

// retval_ptr_ptr. To return by reference, the callee writes into the

// retval_ptr_ptr, freeing the allocated value as it does. (Note, it may

// not actually return anything). So the zval returned - whether we return

// it, or it is the allocated zval - has a refcount of 1.

// The caller is responsible for cleaning that up (note, this is unaffected

// by whether it is added to some COW set).

// For reasons unknown, the Zend API resets the refcount and is_ref fields

// of the return value after the function returns (unless the callee is

// interpreted). If the function is supposed to return by reference, this

// loses the refcount. This only happens when non-interpreted code is

// called. We work around it, when compiled code is called, by saving the

// refcount into SAVED_REFCOUNT, in the return statement. The downside is

// that we may create an error if our code is called by a callback, and

// returns by reference, and the callback returns by reference. At least

// this is an obscure case.

if (signature->common.return_reference

&& signature->type != ZEND_USER_FUNCTION)

{

assert (rhs != EG (uninitialized_zval_ptr));

rhs->is_ref = 1;

if (saved_refcount != 0)

{

rhs->refcount = saved_refcount;

}

rhs->refcount++;

}

saved_refcount = 0; // for ’obscure cases’

zval_ptr_dtor (&rhs);

if (signature->common.return_reference

&& signature->type != ZEND_USER_FUNCTION)

zval_ptr_dtor (&rhs);

}
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