
Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Compiling and Optimizing Scripting Languages

Paul Biggar and David Gregg

Department of Computer Science and Statistics
Trinity College Dublin

LLNL, 17th March, 2009

Trinity College Dublin 1

Compiling and Optimizing Scripting Languages

Paul Biggar and David Gregg

Department of Computer Science and Statistics
Trinity College Dublin

LLNL, 17th March, 2009

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Motivation

User needs web page in 0.5 seconds

Execution time
DB access
Network latency
Browser rendering

Easier maintainance

What if execution was:

2x as fast?
10x as fast?

Trinity College Dublin 2

1. dont have to
obduscate your
code for
performance

Motivation

User needs web page in 0.5 seconds

Execution time
DB access
Network latency
Browser rendering

Easier maintainance

What if execution was:

2x as fast?
10x as fast?

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Security

Trinity College Dublin 3

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization
Simple Optimizations

Advanced Optimizations

4 Security

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Security

Trinity College Dublin 4

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization
Simple Optimizations

Advanced Optimizations

4 Security

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

phc

http://phpcompiler.org

Ahead-of-time compiler for PHP

Edsko de Vries, John Gilbert, Paul Biggar

BSD license

Latest release: 0.2.0.3 - compiles non-OO

svn trunk: compiles most OO

Trinity College Dublin 5

1. BSD licence useful
since its easy to
extend

2. Well engineered -
turns out you dont
get a phd for that

phc

http://phpcompiler.org

Ahead-of-time compiler for PHP

Edsko de Vries, John Gilbert, Paul Biggar

BSD license

Latest release: 0.2.0.3 - compiles non-OO

svn trunk: compiles most OO

http://phpcompiler.org
http://phpcompiler.org

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Structure of phc

Trinity College Dublin 6

1. maketea
2. All can be

unparsed to PHP

Structure of phc

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

PHP

<?php

echo "hello", "world!";

?>

Trinity College Dublin 7

PHP

<?php

echo "hello", "world!";

?>

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

AST

PHP_script

List<Statement>

Eval_expr (3) Nop (5)

Method_invocation (3)

NULL

(Target)
METHOD_NAME (3) List<Actual_parameter>

echo Actual_parameter (3) Actual_parameter (3)

STRING (3)

hello

STRING (3)

world!

Trinity College Dublin 8

1. better than parse
(“concrete syntax”)
tree

AST

PHP_script

List<Statement>

Eval_expr (3) Nop (5)

Method_invocation (3)

NULL

(Target)
METHOD_NAME (3) List<Actual_parameter>

echo Actual_parameter (3) Actual_parameter (3)

STRING (3)

hello

STRING (3)

world!

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

HIR

<?php

$x = $a + $b + $c + $d;

?>

<?php

$TLE0 = ($a + $b);

$TLE1 = ($TLE0 + $c);

$x = ($TLE1 + $d);

?>

Trinity College Dublin 9

1. 3AC
2. Still PHP

HIR

<?php

$x = $a + $b + $c + $d;

?>

<?php

$TLE0 = ($a + $b);

$TLE1 = ($TLE0 + $c);

$x = ($TLE1 + $d);

?>

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

MIR

<?php

while ($cond)

echo "hello", "world!";

?>

<?php

L7:

$TLE0 = !$cond;

if ($TLE0) goto L3 else goto L6;

L6:

print(’hello’);

print(’world!’);

goto L7;

L3:

?>
Trinity College Dublin 10

1. Not PHP
2. Gotos

MIR

<?php

while ($cond)

echo "hello", "world!";

?>

<?php

L7:

$TLE0 = !$cond;

if ($TLE0) goto L3 else goto L6;

L6:

print(’hello’);

print(’world!’);

goto L7;

L3:

?>

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Plugins

http://phpcompiler.org/doc/latest/devmanual.html

Trinity College Dublin 11

1. Visitor pattern
2. We use it for

testing a lot
3. Manual documents

it well
4.

Plugins

http://phpcompiler.org/doc/latest/devmanual.html

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

XML
<?xml version="1.0"?>

<AST:PHP_script xmlns:AST="http://www.phpcompiler.org/phc-1.1">

<AST:Statement_list>

<AST:Eval_expr>

<AST:Method_invocation>

<AST:Target xsi:nil="true" />

<AST:METHOD_NAME>

<value>echo</value>

</AST:METHOD_NAME>

<AST:Actual_parameter_list>

<AST:Actual_parameter>

<bool><!-- is_ref -->false</bool>

<AST:STRING>

<value>hello</value>

</AST:STRING>

</AST:Actual_parameter>

<AST:Actual_parameter>

<bool><!-- is_ref -->false</bool>

<AST:STRING>

<value>world!</value>

</AST:STRING>

</AST:Actual_parameter>

</AST:Actual_parameter_list>

</AST:Method_invocation>

</AST:Eval_expr>

<AST:Nop>

</AST:Nop>

</AST:Statement_list>

</AST:PHP_script>

Trinity College Dublin 12

XML
<?xml version="1.0"?>

<AST:PHP_script xmlns:AST="http://www.phpcompiler.org/phc-1.1">

<AST:Statement_list>

<AST:Eval_expr>

<AST:Method_invocation>

<AST:Target xsi:nil="true" />

<AST:METHOD_NAME>

<value>echo</value>

</AST:METHOD_NAME>

<AST:Actual_parameter_list>

<AST:Actual_parameter>

<bool><!-- is_ref -->false</bool>

<AST:STRING>

<value>hello</value>

</AST:STRING>

</AST:Actual_parameter>

<AST:Actual_parameter>

<bool><!-- is_ref -->false</bool>

<AST:STRING>

<value>world!</value>

</AST:STRING>

</AST:Actual_parameter>

</AST:Actual_parameter_list>

</AST:Method_invocation>

</AST:Eval_expr>

<AST:Nop>

</AST:Nop>

</AST:Statement_list>

</AST:PHP_script>

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Security

Trinity College Dublin 13

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization
Simple Optimizations

Advanced Optimizations

4 Security

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

SAC 2009

A Practical Solution for Scripting Language

Compilers

Paul Biggar, Edsko de Vries and David Gregg

Department of Computer Science and Statistics
Trinity College Dublin

ACM Symposium on Applied Computing - PL track

12th March, 2009

Trinity College Dublin 14

1. Correctness
2. Large libraries
3. Odd features
4. No spec

SAC 2009

A Practical Solution for Scripting Language

Compilers

Paul Biggar, Edsko de Vries and David Gregg

Department of Computer Science and Statistics
Trinity College Dublin

ACM Symposium on Applied Computing - PL track

12th March, 2009

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Sneak peak

Problem: Scripting languages present “unique” problems

(in practice)

Solution: Re-use as much of the Canonical Reference

Implementation as possible.

Trinity College Dublin 15

Sneak peak

Problem: Scripting languages present “unique” problems

(in practice)

Solution: Re-use as much of the Canonical Reference

Implementation as possible.

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Security

Trinity College Dublin 16

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization
Simple Optimizations

Advanced Optimizations

4 Security

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Undefined

The PHP group claim that they have the final say in

the specification of PHP. This group’s specification is

an implementation, and there is no prose specification

or agreed validation suite. There are alternate

implementations [...] that claim to be compatible (they

don’t say what this means) with some version of PHP.

D. M. Jones. Forms of language specification: Examples from

commonly used computer languages. ISO/IEC
JTC1/SC22/OWG/N0121, February 2008.

Trinity College Dublin 17

Undefined

The PHP group claim that they have the final say in

the specification of PHP. This group’s specification is

an implementation, and there is no prose specification

or agreed validation suite. There are alternate

implementations [...] that claim to be compatible (they

don’t say what this means) with some version of PHP.

D. M. Jones. Forms of language specification: Examples from

commonly used computer languages. ISO/IEC

JTC1/SC22/OWG/N0121, February 2008.

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Batteries included

Jeff Atwood, Coding Horror, May 20th, 2008

http://www.codinghorror.com/blog/archives/001119.html

Trinity College Dublin 18

1. all written in C, not
PHP

2. Mike Furr earlier:
1000
methods/classes in
C

3. 4870 functions,
1000 methods

Batteries included

Jeff Atwood, Coding Horror, May 20th, 2008

http://www.codinghorror.com/blog/archives/001119.html

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Change between releases

<?php

var_dump (0x9fa0ff0b);

?>

PHP 5.2.1 (32-bit)

int(2147483647)

PHP 5.2.3 (32-bit)

float(2678128395)

Trinity College Dublin 19

Change between releases

<?php

var_dump (0x9fa0ff0b);

?>

PHP 5.2.1 (32-bit)

int(2147483647)

PHP 5.2.3 (32-bit)

float(2678128395)

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Run-time code generation

<?php

eval ($argv[1]);

?>

<?php

include ("mylib.php");

...

include ("plugin.php");

...

?>

Trinity College Dublin 20

1. scripting langs are
typically made for
interpreters

2. can do source
inclusion at
compile time

3. same mechanism
for plugins

Run-time code generation

<?php

eval ($argv[1]);

?>

<?php

include ("mylib.php");

...

include ("plugin.php");

...

?>

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Security

Trinity College Dublin 21

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization
Simple Optimizations

Advanced Optimizations

4 Security

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Use C API

Trinity College Dublin 22

1. RTCG
2. Functions
3. Changes between

releases: also use
C API at
compile-time

Use C API

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

More detail

PHP zval
Python PyObject
Ruby VALUE
Lua TValue

H. Muhammad and R. Ierusalimschy. C APIs in extension and

extensible languages. Journal of Universal Computer Science,

13(6):839–853, 2007.

Trinity College Dublin 23

1. C API is just zval +
macros and
functions

2. Use (target) PHP’s
C API at run-time

More detail

PHP zval
Python PyObject
Ruby VALUE
Lua TValue

H. Muhammad and R. Ierusalimschy. C APIs in extension and

extensible languages. Journal of Universal Computer Science,

13(6):839–853, 2007.

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Simple listings: $i = 0

// $i = 0;

{

zval* p_i;

php_hash_find (LOCAL_ST, "i", 5863374, p_i);

php_destruct (p_i);

php_allocate (p_i);

ZVAL_LONG (*p_i, 0);

}

Trinity College Dublin 24

Simple listings: $i = 0

// $i = 0;

{

zval* p_i;

php_hash_find (LOCAL_ST, "i", 5863374, p_i);

php_destruct (p_i);

php_allocate (p_i);

ZVAL_LONG (*p_i, 0);

}

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Example: $i = 0

// $i = 0;

{

if (local_i == NULL)

{

local_i = EG (uninitialized_zval_ptr);

local_i->refcount++;

}

zval **p_lhs = &local_i;

zval *value;

if ((*p_lhs)->is_ref)

{

// Always overwrite the current value

value = *p_lhs;

zval_dtor (value);

}

else

{

ALLOC_INIT_ZVAL (value);

zval_ptr_dtor (p_lhs);

*p_lhs = value;

}

ZVAL_LONG (value, 0);

}
Trinity College Dublin 25

Example: $i = 0

// $i = 0;

{

if (local_i == NULL)

{

local_i = EG (uninitialized_zval_ptr);

local_i->refcount++;

}

zval **p_lhs = &local_i;

zval *value;

if ((*p_lhs)->is_ref)

{

// Always overwrite the current value

value = *p_lhs;

zval_dtor (value);

}

else

{

ALLOC_INIT_ZVAL (value);

zval_ptr_dtor (p_lhs);

*p_lhs = value;

}

ZVAL_LONG (value, 0);

}

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Example: $i = $j
// $i = $j;

{

if (local_i == NULL)

{

local_i = EG (uninitialized_zval_ptr);

local_i->refcount++;

}

zval **p_lhs = &local_i;

zval *rhs;

if (local_j == NULL)

rhs = EG (uninitialized_zval_ptr);

else

rhs = local_j;

if (*p_lhs != rhs)

{

if ((*p_lhs)->is_ref)

{

// First, call the destructor to remove any data structures

// associated with lhs that will now be overwritten

zval_dtor (*p_lhs);

// Overwrite LHS

(*p_lhs)->value = rhs->value;

(*p_lhs)->type = rhs->type;

zval_copy_ctor (*p_lhs);

}

else

{

zval_ptr_dtor (p_lhs);

if (rhs->is_ref)

{

// Take a copy of RHS for LHS

*p_lhs = zvp_clone_ex (rhs);

}

else

{

// Share a copy

rhs->refcount++;

*p_lhs = rhs;

}

}

}

} Trinity College Dublin 26

Example: $i = $j
// $i = $j;

{

if (local_i == NULL)

{

local_i = EG (uninitialized_zval_ptr);

local_i->refcount++;

}

zval **p_lhs = &local_i;

zval *rhs;

if (local_j == NULL)

rhs = EG (uninitialized_zval_ptr);

else

rhs = local_j;

if (*p_lhs != rhs)

{

if ((*p_lhs)->is_ref)

{

// First, call the destructor to remove any data structures

// associated with lhs that will now be overwritten

zval_dtor (*p_lhs);

// Overwrite LHS

(*p_lhs)->value = rhs->value;

(*p_lhs)->type = rhs->type;

zval_copy_ctor (*p_lhs);

}

else

{

zval_ptr_dtor (p_lhs);

if (rhs->is_ref)

{

// Take a copy of RHS for LHS

*p_lhs = zvp_clone_ex (rhs);

}

else

{

// Share a copy

rhs->refcount++;

*p_lhs = rhs;

}

}

}

}

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Example: printf ($f)
static zend_fcall_info printf_fci;

static zend_fcall_info_cache printf_fcic = { 0, NULL, NULL, NULL };

// printf($f);

{

if (!printf_fcic->initialized)

{

zval fn;

INIT_PZVAL (&fn);

ZVAL_STRING (&fn, "printf", 0);

int result = zend_fcall_info_init (&fn, &printf_fci, &printf_fcic TSRMLS_CC);

if (result != SUCCESS)

{

phc_setup_error (1, "listings_source.php", 8, NULL TSRMLS_CC);

php_error_docref (NULL TSRMLS_CC, E_ERROR,

"Call to undefined function %s()", function_name);

}

}

zend_function *signature = printf_fcic.function_handler;

zend_arg_info *arg_info = signature->common.arg_info; // optional

int by_ref[1];

int abr_index = 0;

// TODO: find names to replace index

if (arg_info)

{

by_ref[abr_index] = arg_info->pass_by_reference;

arg_info++;

}

else

by_ref[abr_index] = signature->common.pass_rest_by_reference;

abr_index++;

// Setup array of arguments

// TODO: i think arrays of size 0 is an error

int destruct[1];

zval *args[1];

zval **args_ind[1];

int af_index = 0;

destruct[af_index] = 0;

if (by_ref[af_index])

{

if (local_f == NULL)

{

local_f = EG (uninitialized_zval_ptr);

local_f->refcount++;

}

zval **p_arg = &local_f;

// We don’t need to restore ->is_ref afterwards,

// because the called function will reduce the

// refcount of arg on return, and will reset is_ref to

// 0 when refcount drops to 1. If the refcount does

// not drop to 1 when the function returns, but we did

// set is_ref to 1 here, that means that is_ref must

// already have been 1 to start with (since if it had

// not, that means that the variable would have been

// in a copy-on-write set, and would have been

// seperated above).

(*p_arg)->is_ref = 1;

args_ind[af_index] = p_arg;

assert (!in_copy_on_write (*args_ind[af_index]));

args[af_index] = *args_ind[af_index];

}

else

{

zval *arg;

if (local_f == NULL)

arg = EG (uninitialized_zval_ptr);

else

arg = local_f;

args[af_index] = fetch_var_arg (arg, &destruct[af_index]);

if (arg->is_ref)

{

// We dont separate since we don’t own one of ARG’s references.

arg = zvp_clone_ex (arg);

destruct[af_index] = 1;

// It seems we get incorrect refcounts without this.

// TODO This decreases the refcount to zero, which seems wrong,

// but gives the right answer. We should look at how zend does

// this.

arg->refcount--;

}

args[af_index] = arg;

args_ind[af_index] = &args[af_index];

}

af_index++;

phc_setup_error (1, "listings_source.php", 8, NULL TSRMLS_CC);

// save existing parameters, in case of recursion

int param_count_save = printf_fci.param_count;

zval ***params_save = printf_fci.params;

zval **retval_save = printf_fci.retval_ptr_ptr;

zval *rhs = NULL;

// set up params

printf_fci.params = args_ind;

printf_fci.param_count = 1;

printf_fci.retval_ptr_ptr = &rhs;

// call the function

int success = zend_call_function (&printf_fci, &printf_fcic TSRMLS_CC);

assert (success == SUCCESS);

// restore params

printf_fci.params = params_save;

printf_fci.param_count = param_count_save;

printf_fci.retval_ptr_ptr = retval_save;

// unset the errors

phc_setup_error (0, NULL, 0, NULL TSRMLS_CC);

int i;

for (i = 0; i < 1; i++)

{

if (destruct[i])

{

assert (destruct[i]);

zval_ptr_dtor (args_ind[i]);

}

}

// When the Zend engine returns by reference, it allocates a zval into

// retval_ptr_ptr. To return by reference, the callee writes into the

// retval_ptr_ptr, freeing the allocated value as it does. (Note, it may

// not actually return anything). So the zval returned - whether we return

// it, or it is the allocated zval - has a refcount of 1.

// The caller is responsible for cleaning that up (note, this is unaffected

// by whether it is added to some COW set).

// For reasons unknown, the Zend API resets the refcount and is_ref fields

// of the return value after the function returns (unless the callee is

// interpreted). If the function is supposed to return by reference, this

// loses the refcount. This only happens when non-interpreted code is

// called. We work around it, when compiled code is called, by saving the

// refcount into SAVED_REFCOUNT, in the return statement. The downside is

// that we may create an error if our code is called by a callback, and

// returns by reference, and the callback returns by reference. At least

// this is an obscure case.

if (signature->common.return_reference

&& signature->type != ZEND_USER_FUNCTION)

{

assert (rhs != EG (uninitialized_zval_ptr));

rhs->is_ref = 1;

if (saved_refcount != 0)

{

rhs->refcount = saved_refcount;

}

rhs->refcount++;

}

saved_refcount = 0; // for ’obscure cases’

zval_ptr_dtor (&rhs);

if (signature->common.return_reference

&& signature->type != ZEND_USER_FUNCTION)

zval_ptr_dtor (&rhs);

} Trinity College Dublin 27

Example: printf ($f)
static zend_fcall_info printf_fci;

static zend_fcall_info_cache printf_fcic = { 0, NULL, NULL, NULL };

// printf($f);

{

if (!printf_fcic->initialized)

{

zval fn;

INIT_PZVAL (&fn);

ZVAL_STRING (&fn, "printf", 0);

int result = zend_fcall_info_init (&fn, &printf_fci, &printf_fcic TSRMLS_CC);

if (result != SUCCESS)

{

phc_setup_error (1, "listings_source.php", 8, NULL TSRMLS_CC);

php_error_docref (NULL TSRMLS_CC, E_ERROR,

"Call to undefined function %s()", function_name);

}

}

zend_function *signature = printf_fcic.function_handler;

zend_arg_info *arg_info = signature->common.arg_info; // optional

int by_ref[1];

int abr_index = 0;

// TODO: find names to replace index

if (arg_info)

{

by_ref[abr_index] = arg_info->pass_by_reference;

arg_info++;

}

else

by_ref[abr_index] = signature->common.pass_rest_by_reference;

abr_index++;

// Setup array of arguments

// TODO: i think arrays of size 0 is an error

int destruct[1];

zval *args[1];

zval **args_ind[1];

int af_index = 0;

destruct[af_index] = 0;

if (by_ref[af_index])

{

if (local_f == NULL)

{

local_f = EG (uninitialized_zval_ptr);

local_f->refcount++;

}

zval **p_arg = &local_f;

// We don’t need to restore ->is_ref afterwards,

// because the called function will reduce the

// refcount of arg on return, and will reset is_ref to

// 0 when refcount drops to 1. If the refcount does

// not drop to 1 when the function returns, but we did

// set is_ref to 1 here, that means that is_ref must

// already have been 1 to start with (since if it had

// not, that means that the variable would have been

// in a copy-on-write set, and would have been

// seperated above).

(*p_arg)->is_ref = 1;

args_ind[af_index] = p_arg;

assert (!in_copy_on_write (*args_ind[af_index]));

args[af_index] = *args_ind[af_index];

}

else

{

zval *arg;

if (local_f == NULL)

arg = EG (uninitialized_zval_ptr);

else

arg = local_f;

args[af_index] = fetch_var_arg (arg, &destruct[af_index]);

if (arg->is_ref)

{

// We dont separate since we don’t own one of ARG’s references.

arg = zvp_clone_ex (arg);

destruct[af_index] = 1;

// It seems we get incorrect refcounts without this.

// TODO This decreases the refcount to zero, which seems wrong,

// but gives the right answer. We should look at how zend does

// this.

arg->refcount--;

}

args[af_index] = arg;

args_ind[af_index] = &args[af_index];

}

af_index++;

phc_setup_error (1, "listings_source.php", 8, NULL TSRMLS_CC);

// save existing parameters, in case of recursion

int param_count_save = printf_fci.param_count;

zval ***params_save = printf_fci.params;

zval **retval_save = printf_fci.retval_ptr_ptr;

zval *rhs = NULL;

// set up params

printf_fci.params = args_ind;

printf_fci.param_count = 1;

printf_fci.retval_ptr_ptr = &rhs;

// call the function

int success = zend_call_function (&printf_fci, &printf_fcic TSRMLS_CC);

assert (success == SUCCESS);

// restore params

printf_fci.params = params_save;

printf_fci.param_count = param_count_save;

printf_fci.retval_ptr_ptr = retval_save;

// unset the errors

phc_setup_error (0, NULL, 0, NULL TSRMLS_CC);

int i;

for (i = 0; i < 1; i++)

{

if (destruct[i])

{

assert (destruct[i]);

zval_ptr_dtor (args_ind[i]);

}

}

// When the Zend engine returns by reference, it allocates a zval into

// retval_ptr_ptr. To return by reference, the callee writes into the

// retval_ptr_ptr, freeing the allocated value as it does. (Note, it may

// not actually return anything). So the zval returned - whether we return

// it, or it is the allocated zval - has a refcount of 1.

// The caller is responsible for cleaning that up (note, this is unaffected

// by whether it is added to some COW set).

// For reasons unknown, the Zend API resets the refcount and is_ref fields

// of the return value after the function returns (unless the callee is

// interpreted). If the function is supposed to return by reference, this

// loses the refcount. This only happens when non-interpreted code is

// called. We work around it, when compiled code is called, by saving the

// refcount into SAVED_REFCOUNT, in the return statement. The downside is

// that we may create an error if our code is called by a callback, and

// returns by reference, and the callback returns by reference. At least

// this is an obscure case.

if (signature->common.return_reference

&& signature->type != ZEND_USER_FUNCTION)

{

assert (rhs != EG (uninitialized_zval_ptr));

rhs->is_ref = 1;

if (saved_refcount != 0)

{

rhs->refcount = saved_refcount;

}

rhs->refcount++;

}

saved_refcount = 0; // for ’obscure cases’

zval_ptr_dtor (&rhs);

if (signature->common.return_reference

&& signature->type != ZEND_USER_FUNCTION)

zval_ptr_dtor (&rhs);

}

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Applicability

Everything

Perl
PHP
Ruby
Tcl – I think

Trinity College Dublin 28

Applicability

Everything

Perl
PHP
Ruby
Tcl – I think

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Applicability

Everything

Perl
PHP
Ruby
Tcl – I think

Except specification

Lua
Python

Trinity College Dublin 28

1. Python used to be
bad - aycock quote

Applicability

Everything

Perl
PHP
Ruby
Tcl – I think

Except specification

Lua
Python

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Applicability

Everything

Perl
PHP
Ruby
Tcl – I think

Except specification

Lua
Python

Not at all

Javascript

Trinity College Dublin 28

Applicability

Everything

Perl
PHP
Ruby
Tcl – I think

Except specification

Lua
Python

Not at all

Javascript

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Security

Trinity College Dublin 29

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization
Simple Optimizations

Advanced Optimizations

4 Security

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Original Speed-up

0.1x
(10 times slower than the PHP interpreter)

Trinity College Dublin 30

1. Why is
experiemental
evaluation a
speedup?

2. That’s an
interesting result.
Shouldnt compilers
always be faster!!!

3. PHP’s interpreter
isnt slowed by
interpreter loop.
Rather its the level
of dynamicism.

Original Speed-up

0.1x
(10 times slower than the PHP interpreter)

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

The problem with copies

<?php

for ($i = 0; $i < $n; $i++)

$str = $str . "hello";

?>

<?php

for ($i = 0; $i < $n; $i++)

{

$T = $str . "hello";

$str = $T;

}

?>

Trinity College Dublin 31

1. each statement is
pretty high level

The problem with copies

<?php

for ($i = 0; $i < $n; $i++)

$str = $str . "hello";

?>

<?php

for ($i = 0; $i < $n; $i++)

{

$T = $str . "hello";

$str = $T;

}

?>

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Optimization

Constant folding

<?php

...

$T = "5" + true;

...

?>

<?php

...

$T = 6;

...

?>

Trinity College Dublin 32

1. We dont need to
know how to fold
constants - we just
pass it off to PHP’s
eval

Optimization

Constant folding

<?php

...

$T = "5" + true;

...

?>

<?php

...

$T = 6;

...

?>

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Optimization

Constant folding

Constant pooling

<?php

$sum = 0;

for ($i = 0; $i < 10; $i=$i+1)

{

$sum .= "hello";

}

?>

Trinity College Dublin 32

Optimization

Constant folding

Constant pooling

<?php

$sum = 0;

for ($i = 0; $i < 10; $i=$i+1)

{

$sum .= "hello";

}

?>

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Optimization

Constant folding

Constant pooling

Function caching

// printf ($f);

static php_fcall_info printf_info;

{

php_fcall_info_init ("printf", &printf_info);

php_hash_find (

LOCAL_ST, "f", 5863275, &printf_info.params);

php_call_function (&printf_info);

}

Trinity College Dublin 32

1. PHP implements
this

2. function cant
change afte first
invocation - dont
need lookup-cache
of inline cache or
polymorphic inline
cache

Optimization

Constant folding

Constant pooling

Function caching

// printf ($f);

static php_fcall_info printf_info;

{

php_fcall_info_init ("printf", &printf_info);

php_hash_find (

LOCAL_ST, "f", 5863275, &printf_info.params);

php_call_function (&printf_info);

}

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Optimization

Constant folding

Constant pooling

Function caching

Pre-hashing

// $i = 0;

{

zval* p_i;

php_hash_find (LOCAL_ST, "i", 5863374, p_i);

php_destruct (p_i);

php_allocate (p_i);

ZVAL_LONG (*p_i, 0);

}

Trinity College Dublin 32

Optimization

Constant folding

Constant pooling

Function caching

Pre-hashing

// $i = 0;

{

zval* p_i;

php_hash_find (LOCAL_ST, "i", 5863374, p_i);

php_destruct (p_i);

php_allocate (p_i);

ZVAL_LONG (*p_i, 0);

}

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Optimization

Constant folding

Constant pooling

Function caching

Pre-hashing

Symbol-table removal

// $i = 0;

{

php_destruct (local_i);

php_allocate (local_i);

ZVAL_LONG (*local_i, 0);

}

Trinity College Dublin 32

Optimization

Constant folding

Constant pooling

Function caching

Pre-hashing

Symbol-table removal

// $i = 0;

{

php_destruct (local_i);

php_allocate (local_i);

ZVAL_LONG (*local_i, 0);

}

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Challenges to compilation?

phc solution: use the C API

Speedup

Current speed-up

 0

 0.5

 1

 1.5

 2

 2.5

 3

ac
k

er
m

an
n

ar
y

ar
y

2

ar
y

3

fi
b

o

h
as

h
1

h
as

h
2

h
ea

p
so

rt

m
an

d
el

m
an

d
el

2

m
at

ri
x

n
es

te
d

lo
o

p

si
ev

e

si
m

p
le

si
m

p
le

ca
ll

si
m

p
le

u
ca

ll

si
m

p
le

u
d

ca
ll

st
rc

at

m
ea

n

S
p

ee
d

u
p

 o
f

co
m

p
il

ed
 b

en
ch

m
ar

k

Trinity College Dublin 33

1. Explain how to
read graph

2. Much better than
0.1x

3. C compiler: be 5x
faster

4. PHP 40x-70x
slower

Current speed-up

 0

 0.5

 1

 1.5

 2

 2.5

 3

ac
k

er
m

an
n

ar
y

ar
y

2

ar
y

3

fi
b

o

h
as

h
1

h
as

h
2

h
ea

p
so

rt

m
an

d
el

m
an

d
el

2

m
at

ri
x

n
es

te
d

lo
o

p

si
ev

e

si
m

p
le

si
m

p
le

ca
ll

si
m

p
le

u
ca

ll

si
m

p
le

u
d

ca
ll

st
rc

at

m
ea

n

S
p

ee
d

u
p

 o
f

co
m

p
il

ed
 b

en
ch

m
ar

k

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Simple Optimizations

Advanced Optimizations

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Security

Trinity College Dublin 34

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization
Simple Optimizations

Advanced Optimizations

4 Security

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Simple Optimizations

Advanced Optimizations

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Security

Trinity College Dublin 35

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization
Simple Optimizations

Advanced Optimizations

4 Security

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Simple Optimizations

Advanced Optimizations

Intra-procedural optimizations

Dead-code elimination

Sparse-conditional

constant propagation

Trinity College Dublin 36

1. 2x speedup

Intra-procedural optimizations

Dead-code elimination

Sparse-conditional

constant propagation

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Simple Optimizations

Advanced Optimizations

Type-inference

<?php

function a ($x, $y)

{

$str = $x . $y;

...

return $str;

}

?>

Trinity College Dublin 37

Type-inference

<?php

function a ($x, $y)

{

$str = $x . $y;

...

return $str;

}

?>

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Simple Optimizations

Advanced Optimizations

User-space handlers

__toString

__get

__set

__isset

__unset

__sleep

__wake

__call

__callStatic

...

Trinity College Dublin 38

User-space handlers

__toString

__get

__set

__isset

__unset

__sleep

__wake

__call

__callStatic

...

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Simple Optimizations

Advanced Optimizations

C API handlers

read_property

read_dimension

get

set

cast_object

has_property

unset_property

...

Trinity College Dublin 39

1. So previous SSA
opts were illegal

2. Complete access
to interpreter
internals

3. Need accurate
use-defs

C API handlers

read_property

read_dimension

get

set

cast_object

has_property

unset_property

...

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Simple Optimizations

Advanced Optimizations

Unknown types propagate

local symbol table

global symbol table

return values

reference parameters

callee parameters

Trinity College Dublin 40

Unknown types propagate

local symbol table

global symbol table

return values

reference parameters

callee parameters

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Simple Optimizations

Advanced Optimizations

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Security

Trinity College Dublin 41

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization
Simple Optimizations

Advanced Optimizations

4 Security

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Simple Optimizations

Advanced Optimizations

Analysis design

Must model types precisely

(Possibly unnamed) fields, arrays, variables and method
calls

Trinity College Dublin 42

Analysis design

Must model types precisely

(Possibly unnamed) fields, arrays, variables and method
calls

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Simple Optimizations

Advanced Optimizations

Analysis design

Must model types precisely

(Possibly unnamed) fields, arrays, variables and method
calls

Uses and definitions incomplete

Can’t use def-use chains

Can’t use SSA

Trinity College Dublin 42

1. Uses and
defintions
incomplete - this
doesnt use them

Analysis design

Must model types precisely

(Possibly unnamed) fields, arrays, variables and method
calls

Uses and definitions incomplete

Can’t use def-use chains
Can’t use SSA

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Simple Optimizations

Advanced Optimizations

Analysis design

Must model types precisely

(Possibly unnamed) fields, arrays, variables and method
calls

Uses and definitions incomplete

Can’t use def-use chains

Can’t use SSA

Imprecise callgraph

Trinity College Dublin 42

1. Imprecise
callgraph - do it
lazily

Analysis design

Must model types precisely

(Possibly unnamed) fields, arrays, variables and method
calls

Uses and definitions incomplete

Can’t use def-use chains
Can’t use SSA

Imprecise callgraph

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Simple Optimizations

Advanced Optimizations

Algorithm

Abstract Execution / Interpretation

Trinity College Dublin 43

Algorithm

Abstract Execution / Interpretation

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Simple Optimizations

Advanced Optimizations

Algorithm

Abstract Execution / Interpretation

Points-to analysis

*-sensitive

Trinity College Dublin 43

1. flow, context,
object, field

Algorithm

Abstract Execution / Interpretation

Points-to analysis

*-sensitive

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Simple Optimizations

Advanced Optimizations

Algorithm

Abstract Execution / Interpretation

Points-to analysis

*-sensitive

Constant-propagation

Precision
Array-indices/field names
Implicit conversions

A. Pioli. Conditional pointer aliasing and constant propagation.

Master’s thesis, SUNY at New Paltz, 1999.

Trinity College Dublin 43

Algorithm

Abstract Execution / Interpretation

Points-to analysis

*-sensitive

Constant-propagation

Precision
Array-indices/field names
Implicit conversions

A. Pioli. Conditional pointer aliasing and constant propagation.

Master’s thesis, SUNY at New Paltz, 1999.

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Simple Optimizations

Advanced Optimizations

Algorithm

Abstract Execution / Interpretation

Points-to analysis

*-sensitive

Constant-propagation

Precision
Array-indices/field names
Implicit conversions

Type-inference

Virtual calls
Function annotations

Trinity College Dublin 43

1. Make polymorphic
calls monomorphic

2. Go through each of
the problems on
the previous slide

3. model types
precisely

4. need to model
many functions - in
contrast to SAC
stuff

5. much easier than
reimplementing,
however

Algorithm

Abstract Execution / Interpretation

Points-to analysis

*-sensitive

Constant-propagation

Precision
Array-indices/field names
Implicit conversions

Type-inference

Virtual calls
Function annotations

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Simple Optimizations

Advanced Optimizations

Complex cases

Hashtables

Implicit conversions

Variable-variables

$GLOBALS

Static includes

$SESSION

Compiler temporaries

Trinity College Dublin 44

1. Static-includes
optimization needs
to be
deployment-time

2. hashtables - SAC
javascript talk

Complex cases

Hashtables

Implicit conversions

Variable-variables

$GLOBALS

Static includes

$SESSION

Compiler temporaries

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Simple Optimizations

Advanced Optimizations

Interesting thoughts

Strip off first loop iteration

Trinity College Dublin 45

1. just like hotspot

Interesting thoughts

Strip off first loop iteration

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Simple Optimizations

Advanced Optimizations

Interesting thoughts

Strip off first loop iteration

JITs or Gal/Franz Tracing?

Trinity College Dublin 45

1. Would it go well
with Gal/Franz
tracing?

Interesting thoughts

Strip off first loop iteration

JITs or Gal/Franz Tracing?

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Simple Optimizations

Advanced Optimizations

Interesting thoughts

Strip off first loop iteration

JITs or Gal/Franz Tracing?

Use string transducer analysis

Trinity College Dublin 45

Interesting thoughts

Strip off first loop iteration

JITs or Gal/Franz Tracing?

Use string transducer analysis

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Security

Trinity College Dublin 46

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization
Simple Optimizations

Advanced Optimizations

4 Security

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Security

Davis - if we include it, we’ll do better

Sound and Precise Analysis of Web Applications

for Injection Vulnerabilities

Gary Wassermann, Zhendong Su, PLDI’07.

Static approximation of dynamically generated Web pages

Yasuhiko Minamide, WWW 2005

Trinity College Dublin 47

Security

Davis - if we include it, we’ll do better

Sound and Precise Analysis of Web Applications
for Injection Vulnerabilities

Gary Wassermann, Zhendong Su, PLDI’07.

Static approximation of dynamically generated Web pages

Yasuhiko Minamide, WWW 2005

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Security

Davis - if we include it, we’ll do better

Tuwien/Pixy - taint analysis (literal analysis + points to)

Trinity College Dublin 47

Security

Davis - if we include it, we’ll do better

Tuwien/Pixy - taint analysis (literal analysis + points to)

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Security

Davis - if we include it, we’ll do better

Tuwien/Pixy - taint analysis (literal analysis + points to)

Utrecht/Stanford - dont remember

Trinity College Dublin 47

Security

Davis - if we include it, we’ll do better

Tuwien/Pixy - taint analysis (literal analysis + points to)

Utrecht/Stanford - dont remember

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Summary

Re-use existing run-time for language

Better yet: standardize libraries (and language?), including

FFI

Analysis needs to be precise, and whole-program

Pessimistic assumptions spread

Language, implementation and community need to be
fixed

All related?

Trinity College Dublin 48

Summary

Re-use existing run-time for language

Better yet: standardize libraries (and language?), including

FFI

Analysis needs to be precise, and whole-program

Pessimistic assumptions spread

Language, implementation and community need to be
fixed

All related?

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Thanks

phc needs contributors

contribute:
http://phpcompiler.org/contribute.html

mailing list: phc-general@phpcompiler.org

slides: http://www.cs.tcd.ie/~pbiggar/

contact: paul.biggar@gmail.com

Trinity College Dublin 49

Thanks

phc needs contributors

contribute:
http://phpcompiler.org/contribute.html

mailing list: phc-general@phpcompiler.org

slides: http://www.cs.tcd.ie/~pbiggar/

contact: paul.biggar@gmail.com

http://phpcompiler.org/contribute.html
phc-general@phpcompiler.org
http://www.cs.tcd.ie/~pbiggar/
paul.biggar@gmail.com
http://phpcompiler.org/contribute.html
phc-general@phpcompiler.org
http://www.cs.tcd.ie/~pbiggar/
paul.biggar@gmail.com

Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Security

Complex cases

Hashtables

Implicit conversions

Variable-variables

$GLOBALS

Static includes

$SESSION

Compiler temporaries

Trinity College Dublin 50

1. Static-includes
optimization needs
to be
deployment-time

2. hashtables - SAC
javascript talk

Complex cases

Hashtables

Implicit conversions

Variable-variables

$GLOBALS

Static includes

$SESSION

Compiler temporaries

	Introduction to phc
	Current state of phc
	Challenges to compilation?
	phc solution: use the C API
	Speedup

	Next for phc - Analysis and Optimization
	Simple Optimizations
	Advanced Optimizations

	Security

