
A Practical Solution for Scripting Language Compilers

Paul Biggar

pbiggar@cs.tcd.ie

Edsko de Vries

edsko.de.vries@cs.tcd.ie

David Gregg

david.gregg@cs.tcd.ie

Department of Computer Science
Trinity College Dublin

Ireland

ABSTRACT

Although scripting languages are becoming increasingly popular,
even mature scripting language implementations remain interpreted.
Several compilers and reimplementations have been attempted, gen-
erally focusing on performance.

Based on our survey of these reimplementations, we determine
that there are three important features of scripting languages that
are difficult to compile or reimplement. Since scripting languages
are defined primarily through the semantics of their original imple-
mentations, they often change semantics between releases. They
provide large standard libraries, which are difficult to re-use, and
costly to reimplement. They provide C APIs, used both for foreign-
function-interfaces and to write third-party extensions. These APIs
typically have tight integration with the original implementation.
Finally, they support run-time code generation. These features make
the important goal of correctness difficult to achieve.

We present a technique to support these features in an ahead-of-
time compiler for PHP. Our technique uses the original PHP imple-
mentation through the provided C API, both in our compiler, and
an our generated code. We support all of these important script-
ing language features, particularly focusing on the correctness of
compiled programs. Additionally, our approach allows us to au-
tomatically support limited future language changes. We present a
discussion and performance evaluation of this technique, which has
not previously been published.

c©ACM, 2009. This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in SAC ’09:
Proceedings of the 2009 ACM Symposium on Applied Computing
(March 2009)

1. MOTIVATION
Although scripting languages1are becoming increasingly popu-

lar, most scripting language implementations remain interpreted.
Typically, these implementations are slow, between one and two or-
ders of magnitude slower than C. There are a number of reasons for
this. Scripting languages have grown up around interpreters, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8­12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978­1­60558­166­8/09/03 ...$5.00.

were generally used to glue together performance sensitive tasks.
Hence, the performance of the language itself was not important.
As they have increased in prominence, larger applications are be-
ing developed entirely in scripting languages, and performance is
increasingly important.

The major strategy for retrofitting performance into an appli-
cation written in a scripting language, is to identify performance
hot-spots, and rewrite them in C using a provided C API. Mod-
ern scripting languages are equipped with C APIs which can inter-
face with the interpreter – in fact, in many cases the interpreters
themselves are written using these APIs. Though this is not a bad
strategy—it is a very strong alternative to rewriting the entire ap-
plication in a lower level language—a stronger strategy may be to
compile the entire application. Having a compiler automatically
increase the speed of an application is an important performance
tool, one that contributes to the current dominance of C, C++ and
Java.

However, it is not straight-forward to write a scripting language
compiler. The most important attribute of a compiler—more im-
portant than speed—is correctness, and this is difficult to achieve
for a scripting language. Scripting languages do not have any stan-
dards or specifications. Rather, they are defined by the behaviour
of their initial implementation, which we refer to as their “canoni-
cal implementation”. The correctness of a later implementation is
determined by its semantic equivalence with this canonical imple-
mentation. It is also important to be compatible with large standard
libraries, written in C. Both the language and the libraries often
change between releases, leading to not one, but multiple imple-
mentations with which compatibility must be achieved.

In addition, there exist many third-party extensions and libraries
in wide use, written using the language’s built-in C API. These re-
quire a compiler to support this API in its generated code, since
reimplementing the library may not be practical, especially if it in-
volves proprietary code.

A final challenge is that of run-time code generation. Script-
ing languages typically support an eval construct, which executes
source code at run-time. Even when eval is not used, the semantics
of some language features require some computation to be deferred
until run-time. A compiler must therefore provide an run-time com-
ponent, with which to execute the code generated at run-time.

In phc [5], our ahead-of-time compiler for PHP, we are able to
deal with the undefined and changing semantics of PHP by inte-
grating the PHP system—PHP’s canonical implementation—into

1We consider PHP, Perl, Python, Ruby and Lua as the current crop
of scripting languages. We exclude Javascript since it does not
share many of the attributes we discuss in this paper. Notably, it
is standardized, and many distinct implementations exist, none of
which are canonical.

both our compiler and compiled code. At compile-time, we use the
PHP system as a language oracle, giving us the ability to automat-
ically adapt to changes in the language, and allowing us avoid the
long process of documenting and copying the behaviour of myriad
different versions of the language. We also generate C code which
interfaces with the PHP system via its C API. This allows our com-
piled code to interact with built-in functions and libraries, saving
not only the effort of reimplementation of large standard libraries,
but also allowing us to interface with both future and proprietary
libraries and extensions. Finally, we reuse the existing PHP sys-
tem to handle run-time code generation, which means we are not
required to provide an run-time version of our compiler, which can
be a difficult and error-prone process.

Since many of the problems we discuss occur with any reimple-
mentation, whether it is a compiler, interpreter or JIT compiler, we
shall generally just use the term ‘compiler’ to refer to any script-
ing language reimplementation. We believe it is obvious when our
discussion only applies to a compiler, as opposed to a reimplemen-
tation which is not a compiler.

In Section 2.1 we provide a short motivating example, illustrat-
ing these three important difficulties: the lack of a defined seman-
tics, emulating C APIs, and supporting run-time code generation.
In Section 3, we examine a number of previous scripting language
compilers, focusing on important compromises made by the com-
piler authors which prevent them from correctly replicating the
scripting languages they compile. Our approach is discussed in
Section 4, explaining how each important scripting language fea-
ture is correctly handled by re-using the canonical implementation.
Section 5 discusses the complementary approach of using a JIT
compiler. The performance results of our compiler are presented in
Section 6.

2. CHALLENGES TO COMPILATION
There are three major challenges to scripting languages compil-

ers: the lack of a defined semantics, emulating C APIs, and sup-
porting run-time code generation. Each presents a significant chal-
lenge, and great care is required both in the design and implemen-
tation of scripting language compilers as a result. We begin by
presenting a motivating example, before describing the three chal-
lenges in depth.

2.1 Motivating Example
Listing 1 contains a short program segment demonstrating a num-

ber of features which are difficult to compile. The program segment
itself is straight-forward, loading an encryption library and iterating
through files, performing some computation and some encryption
on each. The style uses a number of features idiomatic to scripting
languages. Though we wrote this program segment as an example,
each important feature was derived from actual code we saw in the
wild.

Lines 3-6 dynamically load an encryption library; the exact li-
brary is decided by the $engine variable, which may be provided
at run-time. Line 9 creates an array of hexadecimal values, to be
used later in the encryption process. Lines 12-16 read files from
disk. The files contain data serialized by the var_export func-
tion, which converts a data-structure into PHP code which when
executed will create a copy of the data-structure. The serialized
data is read on line 16, and is deserialized when line 17 is exe-
cuted. Lines 20-28 represent some data manipulation, with line 20
performing a hashtable lookup. The data is encrypted on line 31,
before being re-serialized and written to disk in lines 34 and 35 re-
spectively. Line 37 selects the next file by incrementing the string
in $filename.

1 define(DEBUG, "0");

2
3 # Create instance of cipher engine

4 include ’Cipher/’ . $engine . ’.php’;

5 $class = ’Cipher_’ . $engine;

6 $cipher = new $class();

7
8 # Load s_box

9 $s_box = array(0x30fb40d4, ..., 0x9fa0ff0b);

10
11 # Load files

12 $filename = "data_1000";

13 for($i = 0; $i < 20; $i++)

14 {

15 if(DEBUG) echo "read serialized data";

16 $serial = file_get_contents($filename);

17 $deserial = eval("return $serial;");

18
19 # Add size suffix

20 $size =& $deserial["SIZE"];

21 if ($size > 1024 * 1024 * 1024)

22 $size .= "GB";

23 elseif ($size > 1024 * 1024)

24 $size .= "MB";

25 elseif ($size > 1024)

26 $size .= "KB";

27 else

28 $size .= "B";

29
30 # Encrypt

31 $out = $cipher->encrypt($deserial, $s_box);

32
33 if(DEBUG) echo "reserialize data";

34 $serial = var_export($out, 1);

35 file_put_contents($filename, $serialized);

36
37 $filename++;

38 }

Listing 1: PHP code demonstrating dynamic, changing or unspeci-
fied language features.

2.2 Undefined Language Semantics
A major problem for reimplementations of scripting languages is

the languages’ undefined semantics. Jones [12] describes a number
of forms of language specification. Scripting languages typically
follow the method of a “production use implementation” in his tax-
onomy. In the case of PHP, Jones says:

The PHP group claim that they have the final say in
the specification of PHP. This group’s specification is
an implementation, and there is no prose specification
or agreed validation suite. There are alternate imple-
mentations [...] that claim to be compatible (they don’t
say what this means) with some version of PHP.

As a result of the lack of abstract semantics, compilers must in-
stead adhere to the concrete semantics of the canonical implemen-
tation for correctness. However, different releases of the canonical
implementation may have different concrete semantics. In fact, for
PHP, changes to the language definition occur as frequently as a
new release of the PHP interpreter. In theory, the language would
only change due to new features. However, new features frequently
build upon older features, changing the semantics of the older fea-
tures. Older features are also modified with bug fixes. Naturally,
changes to a feature may also introduce new bugs, and there ex-
ists no validation suite to prevent these bugs from being considered
features. In a number of cases we have observed, a “bug” has been
documented in the language manual, and referred to as a feature,

until a later release when the bug was fixed. As a result of these
changes, even the same feature in different versions of the language
may have different semantics.

While in a standardized language, like C or C++, the semantics
of each feature is clearly defined2, in a scripting language, the task
of determining the semantics can be arduous and time consuming.
Even with the source code of the canonical implementation avail-
able, it is generally impossible to guarantee that the semantics are
copied exactly.

2.2.1 Literal Parsing

A simple example of a change to the language is a bug fix in PHP
version 5.2.3, which changed the value of some integer literals. In
previous versions of PHP, integers above LONG_MAX

3 were con-
verted to floating-point values—unless they were written in hex-
adecimal notation (e.g. 0x30fb40d4). In this case, as in our exam-
ple on line 9 of Listing 1, they were to be truncated to the value of
LONG_MAX. Since version 5.2.3, however, these hexadecimal inte-
gers are converted normally to floating-point values.

2.2.2 Libraries

One of the major attractions of scripting languages is that they
come “batteries included”, meaning they support a large standard
library. However, unlike the C++ or Java standard libraries, a script-
ing language’s standard library is typically written in C, using the
C API. Compilers which do not emulate the C API must instead
reimplement the libraries. Since the libraries are not specified, they
are liable to change, and new libraries are constantly being added.

2.2.3 Built­in Operators

The lack of abstract semantics also means that it is difficult to
know the exact behaviour of some language constructs, especially
due to PHP’s weak-typing. Addition, for example, is more general
in PHP than in C. Its behaviour depends on the run-time type of the
operands, and overflows integers into floats. There is a significant
amount of work in determining the full set of semantics for each
permutation of operator and built-in type. What, for example, is
the sum of the string “hello” and the boolean value true

4? As
another example, the two statements $a = $a + 1; and $a++;

are not equivalent. The latter will “increment” strings, increasing
the ASCII value of the final character, another unlikely language
feature, as shown in Listing 1 on line 37.

Truth is also complicated in PHP, due to its weak-typing rules.
Conditional statements implicitly convert values to booleans, and
the conversions are not always intuitive. Example of false values
are "0", "", 0, false and 0.0. Examples of true values are "1",
1, true, "0x0" and "0.0".

2.2.4 Language Flags

In PHP, the semantics of the language can be tailored through
use of the php.ini file. Certain flags can be set or unset, which
affect the behaviour of the language.

The include_path flag affects separate compilation, and alters
where files can be searched for to include them at compile time.
The call_time_pass_by_ref flag, decides whether a caller can

2Standardized languages also consider some semantics ‘unde-
fined’, meaning an implementation can do anything in this case. No
scripting language features are undefined, since they all do some-
thing in the canonical implementation.
3Constant from the C standard library representing the maximum
signed integer representable in a machine word.
4An integer 1, it seems.

pass its actual parameter to a function by reference, potentially
overriding the function’s default of passing by copy.

2.3 C API
A scripting language’s C API provides its foreign-function in-

terface. Typically, it is used for embedding the language into an
application, creating extensions for the language, and writing li-
braries. A discussion of the merits of various scripting languages’
C APIs is available [17].

Typically, the C API is the only part of the language with stable
behaviour. Though features are added over time, the C API is in
such heavy use that regressions and bugs are noticed quickly. We
have seen that even when changes to the language and its libraries
are frequent, changes to the behaviour of the C API are not.

2.4 Run­time Code Generation
A number of PHP’s dynamic features allow source code, con-

structed at run-time, to be executed at run-time. Frequently these
features are used as quick hacks, and they are also a common vec-
tor for security flaws. However, there are a sufficient number of
legitimate uses of these features that a compiler must support them.

2.4.1 Eval Statements

As demonstrated in Listing 1, the eval statement executes arbi-
trary fragments of PHP code at run-time. It is passed a string of
code, which it parses and executes immediately, potentially defin-
ing functions or classes, calling functions whose names are passed
by the user, or writing to user-named variables.

2.4.2 Include Statements

The PHP include statement is used to import code into a given
script from another source file. Although similar in theory to the
eval statement, this feature is generally used by programmers to
logically separate code into different source files, in a similar fash-
ion to C’s #include directive, or Java’s import declaration. How-
ever, unlike those static approaches, an include statement is ex-
ecuted at run-time, and the included code is only then inserted in
place of the include statement.

2.4.3 Variable­variables

PHP variables are simply a map of strings to values. Variable-
variables provide a means to access a variable whose name is known
at run-time—for example, one can assign to the variable $x using
a variable containing the string value "x". Access to these vari-
ables may be required by eval or include statements, and so this
feature may take advantage of the infrastructure used by these func-
tions. Variable functions are also accessible in this way, and Listing
1 shows a class initialized dynamically in the same manner.

3. RELATED WORK
Having discussed the typical scripting language features, we ex-

amine previous scripting language compilers, discussing how they
handled the challenging features in their implementations. We be-
lieve that many of their solutions are sub-optimal, requiring great
engineering, or by making sacrifices which limit the potential speed
improvement of their approach.

3.1 Undefined Semantics
The most difficult, and rarely addressed issue is ensuring that a

program is executed correctly by a reimplementation of a scripting
language. In particular, it is rarely mentioned that different versions
of a scripting language can have different semantics, especially in
standard libraries.

Very few compilers provide any compatibility guarantees for the
language. Instead, we very often see laundry lists of features which
do not work, and libraries which are not supported. A number
of implementations [3, 6, 11, 13, 14, 19, 21] we surveyed chose to
rewrite the standard libraries. UCPy, a reverse-engineered Python
compiler, reports many of the same difficulties that motivated us: a
large set of standard libraries, a language in constant flux, and “a
manual whose contents surprise its own authors” [3]. They chose
to rewrite the standard library, even though it was 71,000 lines of
code long. Both Roadsend [21] and Quercus [19]—PHP compil-
ers, referred to by Jones’ quote in Section 2.2—reimplement a very
small portion of the PHP standard libraries. In Shed Skin [6, Sect.
4.3.3], a Python-to-C++ compiler, the authors were unable to anal-
yse or reuse Python’s comprehensive standard library. Instead, they
had to both reimplement library functions they wanted to support in
C++, and create a Python model for these functions to be supported
by their compiler.

Jython [14] and JRuby [13] are reimplementations of Python and
Ruby, respectively, on the JVM. They reimplement their respec-
tive standard libraries in their respective host languages, and do
not reuse the canonical implementation. A much better approach
is employed by Phalanger [4, Sect. 3], a PHP compiler targeting
the .NET run-time. It uses a special manager to emulate the PHP
system, through which they access the standard libraries through
the C API. They report that they are compatible with the entire set
of extensions and standard libraries. However, Phalanger does not
use the PHP system’s functions for its built-in operators, instead
rewriting them in its host language, C#. Many of the most difficult
features of PHP to compile involve its built-in operators, and we
believe that reimplementing them is costly and error-prone.

In terms of language features, none of the compilers discussed
have a strategy for automatically adapting to new language seman-
tics. Instead, each provides a list of features with which they are
compatible, and the degree to which they are compatible. None
mentioned the fact that language features change, or that standard
libraries change, and we cannot find any discussion of policies to
deal with these changes.

A few, however, mention specific examples where they were un-
able to be compatible with the canonical implementation of their
language. Johnson et al. [11] attempted to reimplement PHP from
public specifications, using an existing virtual-machine. They re-
ported problems caused by PHP’s call-by-reference semantics. In
their implementation, callee functions are responsible for copying
passed arguments, but no means was available to inform the callee
that an argument to the called function was passed-by-reference5 .
Shed Skin [6] deliberately chose to use restricted language seman-
tics, in that it only compiles a statically-typed subset of Python.

However, two approaches stand out as having taken approaches
which can guarantee a strong degree of compatibility. 211 [1] con-
verts Python virtual machine code to C. It works by pasting to-
gether code from the Python interpreter, which corresponds to the
bytecodes for a program’s hot-spots. 211 is a compiler which is
very resilient to changes in the language, as its approach is not in-
validated by the addition of new opcodes. It’s approach is more
likely to be correct than any other approach we mention, including
our own, though it comes at a cost, which we discuss is Section 6.

Python2C [22, Section 1.3.1] has a similar approach to phc, and,
like both phc and 211, provides great compatibility. Unfortunately,
it comes with a similar cost to 211, as detailed in Section 6.

Pyrex [7] is a domain-specific language for creating Python ex-
tensions. It extends a subset of Python with C types and operations,

5Call-by-reference parameters can be declared at function-
definition time or at call-time.

allowing mixed semantics within a function. It is then compiled, in
a similar fashion to our approach. Though they omit much of the
language, it is easy to see that by following this approach, they have
to ability to have a very high degree of compatibility with Python,
even as the language changes.

3.2 C API
Very few compilers attempt to emulate the C API. However,

Johnson et al. [11] provide a case study, in which they determine
that it is not possible in their implementation, claiming that the in-
tegration between the PHP system and the extensions was too tight.
We have also observed this, as the C API is very closely modelled
on the PHP system’s implementation. Phalanger [4] does not em-
ulate the C API, but it does provide a bridge allowing programs to
call into extensions and libraries. Instead of a C API, it provides a
foreign-function-interface through the .Net run-time. Jython [14]
and JRuby [13] provide a foreign-function-interface through the
JVM, in a similar fashion.

3.3 Run­time Code Generation
A number of compilers [4, 11, 13, 14, 21] support run-time code

generation using an run-time version of their compiler. Some [6,19]
choose not to support it at all. Quercus [19] in particular claims not
to support it for security reasons, as run-time code generation can
lead to code-injection security vulnerabilities.

While providing an run-time portion of the compiler is sensible
for a JIT compiler, which has already been designed as an run-
time system, most of these implementations are not JITs. However,
providing this run-time portion requires that the implementation is
suitable for run-time use; it must have a small footprint, it cannot
leak memory, it must be checked for security issues, and it must
generate code which interfaces with the code which has already
been generated. These requirements are not trivial, and we believe
the approach we outline in Section 4 affords the same benefits, at
much lower engineering cost.

3.4 Other Approaches
Walker’s optimizing compiler for Icon [25] uses the same system

for its compiled code as its interpreter used. In addition, since they
were in control of both the compiler and the run-time system, they
modified the system to generate data to help the compiler make de-
cisions at compile-time. Typically, scripting language implementa-
tions do not provide a compiler, and compilers are typically created
by separate groups. As a result, it is generally not possible to get
this tight integration, though it would be the ideal approach.

In Section 5, we discuss using a JIT compiler, an alternate, and
increasingly popular, method for compiling scripting languages.

4. OUR APPROACH
Nearly all of these approaches have been deficient in some man-

ner. Most were not resilient to changes in their target language, and
instead reimplemented the standard libraries [3,6,11,13,14,19,21].
Those which handled this elegantly still failed to provide the C
API [4], and those which achieved a high degree of compatibil-
ity [1, 7, 22] failed to provide a means to achieving good perfor-
mance.

In phc, our ahead-of-time compiler for PHP, we are able to cor-
rect all of these problems by integrating the PHP system into both
our compiler and compiled code. At compile-time, we use the PHP
system as a language oracle, allowing us to automatically adapt to
changes in the language, and saving us the long process of docu-
menting and copying the behaviour of many different versions of
the language. Our generated C code interfaces with the PHP system

at run-time, via its C API. This allows our compiled code to interact
with built-in functions and libraries and to re-use the existing PHP
system to handle run-time code generation.

4.1 Undefined Semantics

4.1.1 Language Semantics

One option for handling PHP’s volatile semantics is to keep track
of semantic changes in the PHP system, with handlers for each
feature and version. However, our link to the PHP system allows
us to resiliently handle both past and future changes.

For built-in operators, we add calls in our generated code to the
built-in PHP function for handling the relevant operator. As well as
automatically supporting changes to the semantics of the operators,
this also helps us avoid the difficulty of documenting the many per-
mutations of types, values and operators, including unusual edge
cases.

We solve the problem of changing literal definitions by parsing
the literals with the PHP system’s interpreter, and extracting the
value using the C API. If the behaviour of this parsing changes in
newer versions, the PHP system’s interpreter will still parse it cor-
rectly, and so we can automatically adapt to some language changes
which have not yet been made.

We handle language flags by simply querying them via the C
API. With this, we can handle the case where the flag is set at
configure-time, build-time, or via the php.ini file. No surveyed
compiler handles these scenarios.

4.1.2 Libraries and Extensions

One of the largest and most persistent problems in creating a
scripting language reimplementation is that of providing access to
standard libraries and extensions. We do not reimplement any li-
braries or extensions, instead re-using the PHP system’s libraries
via the C API. This allows us to support proprietary extensions,
for which no source code is available, which is not possible with-
out supporting the C API. It also allows support for libraries which
have yet to be written, and changing definitions of libraries between
versions.

4.2 C API
Naturally, we support the entire C API, as our generated code is

a client of it. This goes two ways, as extensions can call into our
compiled code in the same manner as the code calls into extensions.

Integrating the PHP system into the compiler is not complicated,
as most scripting languages are designed for embedding into other
applications [17]. Lua in particular is designed expressly for this
purpose [10]. In the case of PHP, it is a simple process [9] of includ-
ing two lines of C code to initialize and shutdown the PHP system.
We then compile our compiler using the PHP “embed” headers, and
link our compiler against the “embed” version of libphp5.so, the
shared library containing the PHP system.

Users can choose to upgrade their version of the PHP system, in
which case phc will automatically assume the new behaviour for
the generated code. However, compiled binaries may need to be
re-compiled, since the language has effectively changed.

4.3 Run­time Code Generation
In addition to being important for correctness and reuse, the link

between our generated code and the PHP system can be used to deal
with PHP’s dynamic features, in particular, the problem of run-time
code generation.

Though the include statement is semantically a run-time oper-
ation, phc supports a mode in which we attempt to include files

at compile-time, for performance. Since the default directories to
search for these files can change, we use the C API to access the
include_path language flag. If we determine that we are unable
to include a file, due to its unavailability at compile-time, or if the
correctness of its inclusion is undecided, we generate code to in-
voke the interpreter at run-time, which executes the included file.
We must therefore accurately maintain the program’s state in a for-
mat which the interpreter may alter at run-time. Our generated code
registers functions and classes with the PHP system, and keeps vari-
ables accessible via the PHP system’s local and global run-time
symbol tables. This also allows us support variable-variables and
the eval statement with little difficulty. The next section discusses
this in greater detail.

4.4 Compiling with phc

phc parses PHP source code into an Abstract Syntax Tree [5]
from which C code is generated. The generated code interfaces
with the PHP C API, and is compiled into an executable—or a
shared library in the case of web applications—by a C compiler.
Listings 2–5 show extracts of code compiled from the example in
Listing 1. In each case, the example has been edited for brevity and
readability, and we omit many low-level details from our discus-
sion.

1 int main (int argc, char *argv[]) {

2 php_embed_init (argc, argv);

3 php_startup_module (&main_module);

4 call_user_function ("__MAIN__");

5 php_embed_shutdown ();

6 }

Listing 2: phc generated code is called via the PHP system.

Listing 2 shows the main() method for the generated code. phc
compiles all top-level code into a function called __MAIN__. All
functions compiled by phc are added to the PHP system when the
program starts, after which they are treated no differently from PHP
library functions. To run the compiled program, we simply start the
PHP system, load our compiled functions, and invoke __MAIN__.

1 zval* p_i;

2 php_hash_find (LOCAL_ST, "i", 5863374, p_i);

3 php_destruct (p_i);

4 php_allocate (p_i);

5 ZVAL_LONG (*p_i, 0);

Listing 3: phc generated code for $i = 0;

Listing 3 shows a simple assignment. Each value in the PHP
system are stored in a zval instance, which combines type, value
and garbage-collection information. We access the zvals by fetch-
ing them by name from the local symbol table. We then carefully
remove the old value, replacing it with the new value and type.
We use the same symbol tables used within the PHP system, with
the result that the source of the zval, whether interpreted code,
libraries or compiled code, is immaterial.

1 static php_fcall_info fgc_info;

2 php_fcall_info_init (

3 "file_get_contents", &fgc_info);

4
5 php_hash_find (

6 LOCAL_ST, "f", 5863275, &fgc_info.params);

7
8 php_call_function (&fgc_info);

Listing 4: phc generated code for file_get_contents($f);

Listing 4 shows a function call. Compiled functions are accessed
identically to library or interpreted functions. The function infor-
mation is fetched from the PHP system, and the parameters are
fetched from the local symbol table. They are passed to the PHP
system, which executes the function indirectly.

1 php_file_handle fh;

2 php_stream_open (Z_STRVAL_P (p_TLE0), &fh);

3 php_execute_scripts (PHP_INCLUDE, &fh);

4 php_stream_close (&fh);

Listing 5: phc generated code for include($TLE0);

Listing 5 shows an include statement. The PHP system is used
to open, parse, execute and close the file to be included. The PHP
system’s interpreter uses the same symbol tables, functions and val-
ues as our compiled code, so the interface is seamless6.

4.5 Optimizations
The link to the C API also allows phc to preform a number of

optimizations, typically performing computation at compile-time,
which would otherwise be computed at run-time.

4.5.1 Constant­folding

The simplest optimization we perform is constant folding. In
Listing 1, line 23, we would attempt to fold the constant expres-
sion 1024 * 1024 into 1048576. PHP has 4 primitive types:
booleans, integers, strings and reals, and 18 operators, leading to
a large number of interactions which need to be accounted for and
implemented. By using the PHP system at compile-time, we are
able to avoid this duplicated effort, and to stay compatible with
changes in future versions of PHP. We note that the process of ex-
tracting the value after the constant folding does not change if the
computation overflows.

4.5.2 Pre­hashing

We can also use the embedded PHP system to help us generate
optimized code. Scripting languages generally contain powerful
syntax for hashtable operations. Listing 1 demonstrates their use
on line 20.

When optimizing our generated code, we determined that 15%
of our compiled application’s running time was spent looking up
the symbol table and other hashtables, in particular calculating the
hashed values of variable names used to index the local symbol
table. However, for nearly all variable lookups, this hash value can
be calculated at compile-time via the C API, removing the need to
calculate the value at run-time. This can be seen in Listing 3, when
the number 5863374 is the hashed value of "i", used to lookup the
variable $i. This optimization removes nearly all run-time spent
calculating hash values in our benchmark.

4.5.3 Symbol­table Removal

In Section 4.3, we discussed keeping variable in PHP’s run-time
symbol tables. This is only necessary in the presence of run-time
code generation. If we statically guarantee that a particular function
never uses run-time code generation—that is to say, in the majority
of cases—we remove the local symbol table, and access variables
directly in our generated code.

4.5.4 Pass­by­reference Optimization

PHP programs tend to make considerable use of functions writ-
ten in the C API. Since functions may be called which are not

6We note that the seamless interface requires being very careful
with a zval’s reference count.

defined at compile-time, we must add run-time checks to deter-
mine whether parameters should be passed by reference or by copy.
However, we are able to query the function’s signatures of any
function written in the C API, which allows us to calculate these
at compile-time, rather than run-time.

4.6 Caveats
Our approach allows us to gracefully handle changes in the PHP

language, standard libraries and extensions. Clearly though, it is
not possible to automatically deal with large changes to the lan-
guage syntax or semantics. When the parser changes—and it al-
ready has for the next major version of PHP—we are still required
to adapt our compiler for the new version manually. Though we
find it difficult to anticipate minor changes to the language, framing
these problems to use the PHP system is generally straight-forward
after the fact. Finally, we are not resilient to changes to the be-
haviour of the C API; empirically we have noticed that this API is
very stable, far more so than any of the features implemented in
it. This is not assured, as bugs could creep in, but these tend to be
found quickly since the APIs are in very heavy use, and we have
experienced no problems in this regard.

5. JUST­IN­TIME COMPILERS
Just-in-time compilers (JITs) [2] are an alternative to interpret-

ing or ahead-of-time compiling. In recent years, the growing pop-
ularity of managed languages running on virtual machines, such as
Java’s JVM and the Microsoft .Net framework, has contributes to
the growth of JITs.

JIT compilers’ optimizations are not inhibited by dynamic fea-
tures, such as reflection and run-time code generation. Method spe-
cialization [20] compiles methods specifically for the actual run-
time types and values. Other techniques can be used to gradually
compile hot code paths [8, 26].

JITs, however, suffer from great implementation difficulty. They
are typically not portable between different architectures, one of
the great advantages of interpreters. Every modern scripting lan-
guage’s canonical implementation is an interpreter, and many im-
plementations sacrifice performance for ease of implementation.
The Lua Project [10, Section 2], for example, strongly values porta-
bility, and will only use ANSI C, despite potential performance im-
provement from using less portable C dialects, such as using com-
puted gotos in GNU C.

In addition to being difficult to retarget, JIT compilers are diffi-
cult to debug. While it can be difficult to debug generated code in
an ahead-of-time compiler, it is much more difficult to debug code
generated into memory, especially when the JIT compiles a func-
tion multiple times, and replaces the previously generated code in
memory. By contrast, our approach of generating C code using
the PHP C API is generally very easy to debug, using traditional
debugging techniques.

Much of the performance benefit of JIT compilers comes from
inlining functions [23]. However, scripting language standard li-
braries are typically written using the language’s C API, not in the
language itself, and so cannot be analysed by the JIT’s inlining
heuristics. We also expect a similar problem when current methods
of trace-JITs are attempted to be ported from Javascript—in which
entire applications are written mostly in Javascript—to other script-
ing languages. Achieving the kind of speeds achieved by Java JITs
would require rewriting the libraries in the scripting language. As
a result, it often takes great effort to achieve good performance in a
JIT compiler. A prototype JIT for PHP [16] was recently developed
using LLVM [15], but ran 21 times slower than the existing PHP
interpreter.

6. PERFORMANCE EVALUATION
The major motivation of this research is to demonstrate a means

of achieving correctness in a scripting language reimplementation.
However, we are also able to increase the performance of our com-
piled code, compared to the interpreter in the PHP system.

The PHP designers use a small benchmark [24], consisting of
eighteen simple functions, iterated a large number of times, to test
the speed of the PHP interpreter.

We compared the generated code from phc with the PHP inter-
preter, version 5.2.3. We used Linux kernel version 2.6.24-20 on
an Intel Core 2 Duo7, clocked at 2.13Ghz, with 2GB of RAM and
a 2MB cache per CPU. The PHP system was compiled with gcc

version 4.1, using -03.
Figure 1a shows the execution time of our generated code rela-

tive to the PHP interpreter. phc compiled code performs faster on
15 out of 18 tests. The final column is the arithmetic mean of the
speedups, showing that we have achieved a speed-up of 1.53. In
Figure 1b, our metric is memory usage, measured using the space-

time measure of the Valgrind [18] massif tool. Our graph shows
the per-test relative memory usage of one implementation over the
other. The final column is the arithmetic mean of the speedups,
showing a reduction of 1.30.

When compared to a traditional compiler, a speed-up of 1.53 is
modest. However, it is important to note that the majority of com-
putation flows through the same paths as in the interpreted version.
As with most interpreted scripting language implementations, little
of the execution time is spent performing the actual computation.
However, there are many more overheads than simply the cost of
interpreter dispatch. The largest of these is the cost of the dynamic
type system. We believe that we will be able to reduce this cost in
the future, using static analysis and optimization techniques.

The PHP system’s interpreter uses opcodes which perform sig-
nificantly more computation than, say, a Java bytecode. For exam-
ple, an add uses a single opcode, like in Java. However, where a
Java add function is little more than a machine add and an overflow
check, the PHP add opcode calls an add function. This function,
depending on the types of the operands, will merge two arrays, con-
verting strings to integers, call a class method to convert an object
to an integer, or any of a large number of different operations. As a
result, removing the interpreter overhead does not lead to large per-
formance benefits. From profiling the PHP system, approximately
15% of a program’s execution time is due to interpreter overhead,
including dispatch.

Our performance is very similar to that of 211 and Python2C.
Python2C [22, Section 1.3.1] is reputed to have a speed-up of ap-
proximately 1.2, using a similar approach to ours, including some
minor optimizations. 211 [1] only achieves a speed-up of 1.06,
the result of removing the interpreter dispatch from the program
execution, and performing some local optimizations. It removes
Python’s interpreter dispatch overhead, and removes stores to the
operand stack which are immediately followed by loads. We do
not benefit from 211’s optimization as the PHP system does not
spend significant time performing interpreter dispatch. Peephole
stack optimization will also not work for PHP, which does not use
an operand stack.

However, we use a number of our own local optimizations, some
of which were discussed in Section 4.5, which allow us the speed-
up of 1.53. We showed that simply removing the interpreter over-
head and compiling leads to no significant speed-up, and that our
initial version, without optimizations, was much slower than the

7Note that all of our benchmarks are single-threaded, and that PHP
does not support threads at a language level.

PHP system’s interpreter. We expect that traditional data-flow op-
timizations will also greatly increase our performance improve-
ment, and our approach allows this in the future, which neither 211
nor Python2C allow. We believe that without this ability, 211 and
Python2C are likely dead-ends, with their performance limited by
their approaches.

Python2C suffered from generating a very large amount of code,
resulting in many instruction cache misses. Our implementation
also suffers in the same fashion, but believe that with further analy-
sis, the amount of generated C code can be greatly reduced, leading
to greater speed improvement.

We also believe that PHP could achieve higher performance with
a better implementation. However, the run-time work which slows
PHP down also slows down our generated code, and so as PHP is
improved, our speed-up over PHP will likely remain constant.

Importantly, we are able to get a large speed-up over the cur-
rent implementation, while retaining the correctness a compiler re-
quires, and preserving an avenue for future performance increases.

7. CONCLUSION
Scripting languages are becoming increasingly popular, how-

ever, existing approaches to compiling and reimplementing script-
ing languages are insufficient. We present phc, our ahead-of-time
compiler for PHP, which effectively supports three important script-
ing language features which have been poorly supported in exist-
ing approaches. In particular, we effectively handle run-time code
generation, the undefined and changing semantics of scripting lan-
guages, and the built-in C API.

A principle problem of compiling scripting languages is the lack
of language definition or semantics. We believe we are the first
to systematically evaluate linking an interpreter—our source lan-
guage’s de facto specification—into our compiler, making it re-
silient to changes in the PHP language. We describe how linking to
the PHP system helps to keep our compiler semantically equivalent
to PHP, which has previously changed between minor versions.

We also generate code which interfaces with the PHP system.
This allows us to reuse not only the entire PHP standard library, but
also to invoke the system’s interpreter to handle source code gen-
erated at run-time. We discuss how this allows us to reuse built-in
functions for PHP’s operators, replicating their frequently unusual
semantics, and allowing us to automatically support those seman-
tics as they change between releases. Changes to the standard li-
braries and to extensions are also supported with this mechanism.

Through discussing existing approaches, we show that our tech-
nique handles the difficulties of compiler scripting languages bet-
ter than the existing alternatives. We also show that we are able to
achieve a speed-up of 1.53 over the existing implementation.

Overall, we have shown that our approach is novel, worthwhile,
and gracefully deals with a number of significant problems in com-
piling scripting languages, while maintaining semantic equivalence
with the language’s canonical implementation. We believe in the
importance of correctness when compiling scripting languages, and
believe that our research will provide the stepping stone on which
future optimizations can be based.

Acknowledgements

The authors are indebted to Irish Research Council for Science,
Engineering and Technology funded by the National Development
Plan, whose funding made this work possible. We would also like
to thank the paper’s anonymous reviewers, whose comments helped
us improve on earlier versions of this paper.

 0

 0.5

 1

 1.5

 2

 2.5

 3

ac
k

er
m

an
n

ar
y

ar
y

2

ar
y

3

fi
b

o

h
as

h
1

h
as

h
2

h
ea

p
so

rt

m
an

d
el

m
an

d
el

2

m
at

ri
x

n
es

te
d

lo
o

p

si
ev

e

si
m

p
le

si
m

p
le

ca
ll

si
m

p
le

u
ca

ll

si
m

p
le

u
d

ca
ll

st
rc

at

m
ea

n

S
p

ee
d

u
p

 o
f

co
m

p
il

ed
 b

en
ch

m
ar

k

(a) Speedups of phc compiled code vs the PHP interpreter. Re-
sults greater than one indicate phc’s generated code is faster than
the PHP interpreter. The mean bar shows phc’s speedup of 1.53
over the PHP interpreter.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

ac
k

er
m

an
n

ar
y

ar
y

2

ar
y

3

fi
b

o

h
as

h
1

h
as

h
2

h
ea

p
so

rt

m
an

d
el

m
an

d
el

2

m
at

ri
x

n
es

te
d

lo
o

p

si
ev

e

si
m

p
le

si
m

p
le

ca
ll

si
m

p
le

u
ca

ll

si
m

p
le

u
d

ca
ll

st
rc

at

m
ea

n

R
el

at
iv

e
m

em
o

ry
 r

ed
u

ct
io

n

(b) Relative memory usage of phc compiled code vs the PHP in-
terpreter. Results greater than one indicate phc’s generated code
uses less memory than the PHP interpreter. The mean bar shows
phc’s memory reductions of 1.30 over the PHP interpreter.

Figure 1: Performance results.

8. REFERENCES
[1] J. Aycock. Converting Python virtual machine code to C. In

Proceedings of the 7th International Python Conference,
1998.

[2] J. Aycock. A brief history of just-in-time. ACM Comput.

Surv., 35(2):97–113, 2003.

[3] J. Aycock, D. Pereira, and G. Jodoin. UCPy: Reverse
engineering Python. In PyCon DC2003, March 2003.

[4] J. Benda, T. Matousek, and L. Prosek. Phalanger: Compiling
and running PHP applications on the Microsoft .NET
platform. In .NET Technologies 2006, May 2006.

[5] E. de Vries and J. Gilbert. Design and implementation of a
PHP compiler front-end. Dept. of Computer Science
Technical Report TR-2007-47, Trinity College Dublin, 2007.

[6] M. Dufour. Shed Skin: An optimizing Python-to-C++
compiler. Master’s thesis, Delft University of Technology,
2006.

[7] G. Ewing. Pyrex - a Language for Writing Python Extension

Modules. http://www.cosc.canterbury.ac.nz/
greg.ewing/python/Pyrex/.

[8] A. Gal, C. W. Probst, and M. Franz. HotpathVM: an effective
JIT compiler for resource-constrained devices. In VEE ’06:

Proceedings of the 2nd international conference on Virtual

execution environments, pages 144–153, New York, NY,
USA, 2006. ACM.

[9] S. Golemon. Extending and Embedding PHP. Sams,
Indianapolis, IN, USA, 2006.

[10] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes. The
implementation of Lua 5.0. Journal of Universal Computer
Science, 11(7):1159–1176, Jul 2005.

[11] G. Johnson and Z. Slattery. PHP: A language implementer’s
perspective. International PHP Magazine, pages 24–29, Dec
2006.

[12] D. M. Jones. Forms of language specification: Examples
from commonly used computer languages. ISO/IEC
JTC1/SC22/OWG/N0121, February 2008.

[13] JRuby [online]. http://www.jruby.org.

[14] Jython [online]. http://www.jython.org.

[15] C. Lattner and V. Adve. LLVM: a compilation framework for

lifelong program analysis & transformation. In Code

Generation and Optimization, 2004. CGO 2004.

International Symposium on, pages 75–86, 2004.

[16] N. Lopes. Building a JIT compiler for PHP in 2 days
[online]. http://llvm.org/devmtg/2008-08/.

[17] H. Muhammad and R. Ierusalimschy. C APIs in extension
and extensible languages. Journal of Universal Computer
Science, 13(6):839–853, 2007.

[18] N. Nethercote and J. Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. SIGPLAN
Not., 42(6):89–100, 2007.

[19] Quercus: PHP in Java. http:
//www.caucho.com/resin/doc/quercus.xtp.

[20] A. Rigo. Representation-based just-in-time specialization
and the Psyco prototype for python. In PEPM ’04:

Proceedings of the 2004 ACM SIGPLAN symposium on

Partial evaluation and semantics-based program

manipulation, pages 15–26, New York, NY, USA, 2004.
ACM Press.

[21] Roadsend, Inc. Roadsend PHP 2.9.x Manual.
http://code.roadsend.com/pcc-manual.

[22] M. Salib. Starkiller: A static type inferencer and compiler for
Python. Master’s thesis, Massachusetts Institute of
Technology, 2004.

[23] T. Suganuma, T. Yasue, and T. Nakatani. An empirical study
of method in-lining for a Java just-in-time compiler. In
Proceedings of the 2nd Java Virtual Machine Research and

Technology Symposium, pages 91–104, Berkeley, CA, USA,
2002. USENIX Association.

[24] The PHP Group. Zend benchmark [online].
http://cvs.php.net/viewvc.cgi/

ZendEngine2/bench.php?view=co.

[25] K. Walker and R. E. Griswold. An optimizing compiler for
the Icon programming language. Softw. Pract. Exper.,
22(8):637–657, 1992.

[26] M. Zaleski, A. D. Brown, and K. Stoodley. Yeti: a gradually
extensible trace interpreter. In VEE ’07: Proceedings of the

3rd international conference on Virtual execution

environments, pages 83–93, New York, NY, USA, 2007.

