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What is a scripting language?
• Javascript
• Lua
• Perl
• PHP
• Python
• Ruby

Common Features:
• Dynamic typing
• Duck typing
• Interpreted by default
• FFI via C API
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Language implementation

• Interpreters: Easy, portable

• Compilers: Not too hard, sometimes portable,
optimizations

NOT THE DRAGON BOOK
Engineering a Compiler by Cooper/Torczon

Modern Compiler Implementation in X by Appel

• Just-in-time compilers: Very difficult, unportable, fast
interpreter.
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What’s right with scripting languages?

1 Elegant and well designed,
2 High level of abstraction,
3 Dynamic typing (and duck typing).
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I’m not here to
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2. the bad things dont
touch these

3. avoids many
problems inherent
in Java, C# and
C++: verbosity,
type systems
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3 Dynamic typing (and duck typing).



What’s wrong with scripting languages?

Symptoms: Speed, Portability

Problem: Language designed for interpretersProblem: Language designed for one specific interpreter

• Run-time source code execution
• Foreign Function Interface
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FFI

FFI

Foreign Function Interface based on CPython interpreter

• Access to C libraries
• Script C applications using Python scripts
• Rewrite hot code in C
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• Libraries not that slow
• Can break out of Python for slow code.
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FFI (worse) implications
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FFI

FFI solution

Don’t expose yourself!

• Importing functions into Python with a Domain Specific
Language is good

• Only one way of FFI is better
• Declarative is best

• Any reimplementation can reuse the same libraries without
any modifications

• CPython itself can change without hassle
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Compiled and interpreted models

Dynamic source code generation

• eval and dynamic include/import

• meta-programming

eval (mysql_read (...)[0]);

• .rc files

username = "myname"
password = "mypass"
server = "srv.domain.com"

• localization

$lang = ....;
include ("localisation/locale.$lang.php");
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Compiled and interpreted models

Dynamic source code generation

We don’t even know the full
program source!!
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program source!!



Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:

• Must use FFI for speed
• Static analysis
• Cool optimizations can’t happen

t = ...;
for (i = 0; i < strlen(t); i++)
{

s[i] = t[i];
}

t = ...;
_temp = strlen(t);
for (i = 0; i < _temp; i++)
{

s[i] = t[i];
}

alert ($(’li’).get(0).nodeName);alert ($(’li’)[0].nodeName);
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Compiled and interpreted models

JIT compiled

Tracemonkey

http://hacks.mozilla.org/2009/07/tracemonkey-overview/

Type Analysis for Javascript

Simon Holm Jensen, Anders Møller and Peter Thiemann
SAS ’09
http://www.brics.dk/TAJS/
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Compiled and interpreted models

Doing it right

• Factor
• compiled model
• compile-time meta-programming
• declarative FFI
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Open research problems

• Optimizing boxing
• High-level optimizations
• Combining ahead-of-time and JIT compilation
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Conclusion

Design the next scripting
language right
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