
How not to Design a Scripting Language

Paul Biggar

Department of Computer Science and Statistics
Trinity College Dublin

StackOverflow London, 28th October, 2009

How not to Design a Scripting Language Paul Biggar

How not to Design a Scripting Language

Paul Biggar

Department of Computer Science and Statistics
Trinity College Dublin

StackOverflow London, 28th October, 2009

About me

• PhD candidate, Trinity College Dublin
• Topic: Compilers, optimizations, scripting languages.

PhD Dissertation
Design and Implementation of an Ahead-of-time PHP Compiler

phc (http://phpcompiler.org)

How not to Design a Scripting Language Paul Biggar

1. means I just
submitted

2. So that’s what this
talk is about

About me

• PhD candidate, Trinity College Dublin
• Topic: Compilers, optimizations, scripting languages.

PhD Dissertation
Design and Implementation of an Ahead-of-time PHP Compiler

phc (http://phpcompiler.org)

About me

• PhD candidate, Trinity College Dublin
• Topic: Compilers, optimizations, scripting languages.

PhD Dissertation
Design and Implementation of an Ahead-of-time PHP Compiler

phc (http://phpcompiler.org)

How not to Design a Scripting Language Paul Biggar

1. means I just
submitted

2. So that’s what this
talk is about

3. Not much PHP

About me

• PhD candidate, Trinity College Dublin
• Topic: Compilers, optimizations, scripting languages.

PhD Dissertation
Design and Implementation of an Ahead-of-time PHP Compiler

phc (http://phpcompiler.org)

How not to design a scripting language

• Compilers
• Scripting Languages

• Speed

How not to Design a Scripting Language Paul Biggar

1. really, this is a talk
about compilers
and scripting
languages

How not to design a scripting language

• Compilers
• Scripting Languages

• Speed

How not to design a scripting language

• Compilers
• Scripting Languages

• Speed

How not to Design a Scripting Language Paul Biggar

1. Thats whats in the
back of my head all
the time

How not to design a scripting language

• Compilers
• Scripting Languages

• Speed

What is a scripting language?
• Javascript
• Lua
• Perl
• PHP
• Python
• Ruby

Common Features:
• Dynamic typing
• Duck typing
• Interpreted by default
• FFI via C API

How not to Design a Scripting Language Paul Biggar

1. well, no-one
actually has a
good definition of
scripting language!

2. I’m not talking
about Bash or
Powershell or VB,
or some little
language you
wrote last week

What is a scripting language?
• Javascript
• Lua
• Perl
• PHP
• Python
• Ruby

Common Features:
• Dynamic typing
• Duck typing
• Interpreted by default
• FFI via C API

What is a scripting language?
• Javascript
• Lua
• Perl
• PHP
• Python
• Ruby

Common Features:
• Dynamic typing
• Duck typing
• Interpreted by default
• FFI via C API

How not to Design a Scripting Language Paul Biggar

1. well, no-one
actually has a
good definition of
scripting language!

2. I’m not talking
about Bash or
Powershell or VB,
or some little
language you
wrote last week

3. exposing their
internals

What is a scripting language?
• Javascript
• Lua
• Perl
• PHP
• Python
• Ruby

Common Features:
• Dynamic typing
• Duck typing
• Interpreted by default
• FFI via C API

Language implementation

• Interpreters: Easy, portable

• Compilers: Not too hard, sometimes portable,
optimizations

NOT THE DRAGON BOOK
Engineering a Compiler by Cooper/Torczon

Modern Compiler Implementation in X by Appel

• Just-in-time compilers: Very difficult, unportable, fast
interpreter.

How not to Design a Scripting Language Paul Biggar

1. Reads one line at
a time (kinda)

2. hence used in
many scripting
langs

Language implementation

• Interpreters: Easy, portable

• Compilers: Not too hard, sometimes portable,
optimizations

NOT THE DRAGON BOOK
Engineering a Compiler by Cooper/Torczon

Modern Compiler Implementation in X by Appel

• Just-in-time compilers: Very difficult, unportable, fast
interpreter.

Language implementation

• Interpreters: Easy, portable
• Compilers: Not too hard, sometimes portable,

optimizations

NOT THE DRAGON BOOK
Engineering a Compiler by Cooper/Torczon

Modern Compiler Implementation in X by Appel

• Just-in-time compilers: Very difficult, unportable, fast
interpreter.

How not to Design a Scripting Language Paul Biggar

1. Converts source
code into machine
code programs
(kinda)

2. Lots of time to
optimize

Language implementation

• Interpreters: Easy, portable
• Compilers: Not too hard, sometimes portable,

optimizations

NOT THE DRAGON BOOK
Engineering a Compiler by Cooper/Torczon

Modern Compiler Implementation in X by Appel

• Just-in-time compilers: Very difficult, unportable, fast
interpreter.

Language implementation

• Interpreters: Easy, portable
• Compilers: Not too hard, sometimes portable,

optimizations

NOT THE DRAGON BOOK
Engineering a Compiler by Cooper/Torczon

Modern Compiler Implementation in X by Appel

• Just-in-time compilers: Very difficult, unportable, fast
interpreter.

How not to Design a Scripting Language Paul Biggar

1. 2 months, Joel,
Dragon

2. For intermediate
and advanced,
there are also
much better books

Language implementation

• Interpreters: Easy, portable
• Compilers: Not too hard, sometimes portable,

optimizations

NOT THE DRAGON BOOK
Engineering a Compiler by Cooper/Torczon

Modern Compiler Implementation in X by Appel

• Just-in-time compilers: Very difficult, unportable, fast
interpreter.

Language implementation

• Interpreters: Easy, portable
• Compilers: Not too hard, sometimes portable,

optimizations

NOT THE DRAGON BOOK
Engineering a Compiler by Cooper/Torczon

Modern Compiler Implementation in X by Appel

• Just-in-time compilers: Very difficult, unportable, fast
interpreter.

How not to Design a Scripting Language Paul Biggar

1. Amazing
optimizations;
Hotspot; dispatch,
exceptions and
arithmetic

2. Shockingly difficult
to write

Language implementation

• Interpreters: Easy, portable
• Compilers: Not too hard, sometimes portable,

optimizations

NOT THE DRAGON BOOK
Engineering a Compiler by Cooper/Torczon

Modern Compiler Implementation in X by Appel

• Just-in-time compilers: Very difficult, unportable, fast
interpreter.

What’s right with scripting languages?

1 Elegant and well designed,
2 High level of abstraction,
3 Dynamic typing (and duck typing).

How not to Design a Scripting Language Paul Biggar

1. dont dwell here -
I’m not here to
convince you

2. the bad things dont
touch these

What’s right with scripting languages?

1 Elegant and well designed,
2 High level of abstraction,
3 Dynamic typing (and duck typing).

What’s right with scripting languages?

1 Elegant and well designed,

2 High level of abstraction,
3 Dynamic typing (and duck typing).

How not to Design a Scripting Language Paul Biggar

1. dont dwell here -
I’m not here to
convince you

2. the bad things dont
touch these

3. Python, Ruby; JS
too in a certain way

What’s right with scripting languages?

1 Elegant and well designed,

2 High level of abstraction,
3 Dynamic typing (and duck typing).

What’s right with scripting languages?

1 Elegant and well designed,
2 High level of abstraction,

3 Dynamic typing (and duck typing).

How not to Design a Scripting Language Paul Biggar

1. dont dwell here -
I’m not here to
convince you

2. the bad things dont
touch these

3. get things done, as
Joel would say

What’s right with scripting languages?

1 Elegant and well designed,
2 High level of abstraction,

3 Dynamic typing (and duck typing).

What’s right with scripting languages?

1 Elegant and well designed,
2 High level of abstraction,
3 Dynamic typing (and duck typing).

How not to Design a Scripting Language Paul Biggar

1. dont dwell here -
I’m not here to
convince you

2. the bad things dont
touch these

3. avoids many
problems inherent
in Java, C# and
C++: verbosity,
type systems

What’s right with scripting languages?

1 Elegant and well designed,
2 High level of abstraction,
3 Dynamic typing (and duck typing).

What’s wrong with scripting languages?

Symptoms: Speed, Portability

Problem: Language designed for interpretersProblem: Language designed for one specific interpreter

• Run-time source code execution
• Foreign Function Interface

How not to Design a Scripting Language Paul Biggar

1. portable to .Net,
JVM, etc?

2. not fast means you
cant use it as much

What’s wrong with scripting languages?

Symptoms: Speed, Portability

Problem: Language designed for interpretersProblem: Language designed for one specific interpreter

• Run-time source code execution
• Foreign Function Interface

What’s wrong with scripting languages?

Symptoms: Speed, Portability

Problem: Language designed for interpreters

Problem: Language designed for one specific interpreter

• Run-time source code execution

• Foreign Function Interface

How not to Design a Scripting Language Paul Biggar

1. portable to .Net,
JVM, etc?

2. not fast means you
cant use it as much

What’s wrong with scripting languages?

Symptoms: Speed, Portability

Problem: Language designed for interpreters

Problem: Language designed for one specific interpreter

• Run-time source code execution

• Foreign Function Interface

What’s wrong with scripting languages?

Symptoms: Speed, Portability

Problem: Language designed for interpreters

Problem: Language designed for one specific interpreter

• Run-time source code execution
• Foreign Function Interface

How not to Design a Scripting Language Paul Biggar

1. portable to .Net,
JVM, etc?

2. not fast means you
cant use it as much

What’s wrong with scripting languages?

Symptoms: Speed, Portability

Problem: Language designed for interpreters

Problem: Language designed for one specific interpreter

• Run-time source code execution
• Foreign Function Interface

FFI

FFI

Foreign Function Interface based on CPython interpreter

• Access to C libraries
• Script C applications using Python scripts
• Rewrite hot code in C

How not to Design a Scripting Language Paul Biggar

1. define FFI
2. glue code in C;

wrap things in
python data
structures; expose
interpreter
internals

3. Works for all
except JS - I’m
using Python as
example

FFI

Foreign Function Interface based on CPython interpreter

• Access to C libraries
• Script C applications using Python scripts
• Rewrite hot code in C

FFI

FFI (good) implications

• Libraries not that slow
• Can break out of Python for slow code.

How not to Design a Scripting Language Paul Biggar

FFI (good) implications

• Libraries not that slow
• Can break out of Python for slow code.

FFI

FFI (bad) implications

• Language is allowed to be slow
• Must break out of Python for speed.

How not to Design a Scripting Language Paul Biggar

1. nice things about
python are lost
(high level, elegant

FFI (bad) implications

• Language is allowed to be slow
• Must break out of Python for speed.

FFI

FFI (worse) implications

• Legacy issues

• Reimplementations

How not to Design a Scripting Language Paul Biggar

1. you cant change
the interpreter
much - it cant get
faster

FFI (worse) implications

• Legacy issues

• Reimplementations

FFI

FFI (worse) implications

• Legacy issues
• Reimplementations

How not to Design a Scripting Language Paul Biggar

1. Jython,
IronPython, PyPy,
cant use the same
code

2. cant even
reimplement own
language

3. by constrast, look
at JS

FFI (worse) implications

• Legacy issues
• Reimplementations

FFI

FFI solution

Don’t expose yourself!

• Importing functions into Python with a Domain Specific
Language is good

• Only one way of FFI is better
• Declarative is best

• Any reimplementation can reuse the same libraries without
any modifications

• CPython itself can change without hassle

How not to Design a Scripting Language Paul Biggar

1. rule for life, really
2. like pyrex, ctypes,

etc
3. no implementation

specific code at all
4. import functions

directly, and
access them from
within Python
without a line of C

5. Ruby libFFI

FFI solution

Don’t expose yourself!

• Importing functions into Python with a Domain Specific
Language is good

• Only one way of FFI is better
• Declarative is best

• Any reimplementation can reuse the same libraries without
any modifications

• CPython itself can change without hassle

FFI

FFI solution

Don’t expose yourself!

• Importing functions into Python with a Domain Specific
Language is good

• Only one way of FFI is better

• Declarative is best

• Any reimplementation can reuse the same libraries without
any modifications

• CPython itself can change without hassle

How not to Design a Scripting Language Paul Biggar

1. rule for life, really
2. like pyrex, ctypes,

etc
3. for

reimplementation
4. no implementation

specific code at all
5. import functions

directly, and
access them from
within Python
without a line of C

6. Ruby libFFI

FFI solution

Don’t expose yourself!

• Importing functions into Python with a Domain Specific
Language is good

• Only one way of FFI is better

• Declarative is best

• Any reimplementation can reuse the same libraries without
any modifications

• CPython itself can change without hassle

FFI

FFI solution

Don’t expose yourself!

• Importing functions into Python with a Domain Specific
Language is good

• Only one way of FFI is better
• Declarative is best

• Any reimplementation can reuse the same libraries without
any modifications

• CPython itself can change without hassle

How not to Design a Scripting Language Paul Biggar

1. rule for life, really
2. like pyrex, ctypes,

etc
3. no implementation

specific code at all
4. import functions

directly, and
access them from
within Python
without a line of C

5. Ruby libFFI

FFI solution

Don’t expose yourself!

• Importing functions into Python with a Domain Specific
Language is good

• Only one way of FFI is better
• Declarative is best

• Any reimplementation can reuse the same libraries without
any modifications

• CPython itself can change without hassle

FFI

FFI solution

Don’t expose yourself!

• Importing functions into Python with a Domain Specific
Language is good

• Only one way of FFI is better
• Declarative is best

• Any reimplementation can reuse the same libraries without
any modifications

• CPython itself can change without hassle

How not to Design a Scripting Language Paul Biggar

1. rule for life, really
2. like pyrex, ctypes,

etc
3. no implementation

specific code at all
4. import functions

directly, and
access them from
within Python
without a line of C

5. Ruby libFFI

FFI solution

Don’t expose yourself!

• Importing functions into Python with a Domain Specific
Language is good

• Only one way of FFI is better
• Declarative is best

• Any reimplementation can reuse the same libraries without
any modifications

• CPython itself can change without hassle

Compiled and interpreted models

Dynamic source code generation

• eval and dynamic include/import

• meta-programming

eval (mysql_read (...)[0]);

• .rc files

username = "myname"
password = "mypass"
server = "srv.domain.com"

• localization

$lang =;
include ("localisation/locale.$lang.php");

How not to Design a Scripting Language Paul Biggar

1. Should be used for
source inclusion.
But because
they’re interpreted,
they can be used
for:

Dynamic source code generation

• eval and dynamic include/import

• meta-programming

eval (mysql_read (...)[0]);

• .rc files

username = "myname"
password = "mypass"
server = "srv.domain.com"

• localization

$lang =;
include ("localisation/locale.$lang.php");

Compiled and interpreted models

Dynamic source code generation

• eval and dynamic include/import
• meta-programming

eval (mysql_read (...)[0]);

• .rc files

username = "myname"
password = "mypass"
server = "srv.domain.com"

• localization

$lang =;
include ("localisation/locale.$lang.php");

How not to Design a Scripting Language Paul Biggar

1. Should be used for
source inclusion.
But because
they’re interpreted,
they can be used
for:

Dynamic source code generation

• eval and dynamic include/import
• meta-programming

eval (mysql_read (...)[0]);

• .rc files

username = "myname"
password = "mypass"
server = "srv.domain.com"

• localization

$lang =;
include ("localisation/locale.$lang.php");

Compiled and interpreted models

Dynamic source code generation

• eval and dynamic include/import
• meta-programming

eval (mysql_read (...)[0]);

• .rc files

username = "myname"
password = "mypass"
server = "srv.domain.com"

• localization

$lang =;
include ("localisation/locale.$lang.php");

How not to Design a Scripting Language Paul Biggar

1. Should be used for
source inclusion.
But because
they’re interpreted,
they can be used
for:

Dynamic source code generation

• eval and dynamic include/import
• meta-programming

eval (mysql_read (...)[0]);

• .rc files

username = "myname"
password = "mypass"
server = "srv.domain.com"

• localization

$lang =;
include ("localisation/locale.$lang.php");

Compiled and interpreted models

Dynamic source code generation

• eval and dynamic include/import
• meta-programming

eval (mysql_read (...)[0]);

• .rc files

username = "myname"
password = "mypass"
server = "srv.domain.com"

• localization

$lang =;
include ("localisation/locale.$lang.php");

How not to Design a Scripting Language Paul Biggar

1. Should be used for
source inclusion.
But because
they’re interpreted,
they can be used
for:

Dynamic source code generation

• eval and dynamic include/import
• meta-programming

eval (mysql_read (...)[0]);

• .rc files

username = "myname"
password = "mypass"
server = "srv.domain.com"

• localization

$lang =;
include ("localisation/locale.$lang.php");

Compiled and interpreted models

Dynamic source code generation

We don’t even know the full
program source!!

How not to Design a Scripting Language Paul Biggar

1. go to next slide
straight away

Dynamic source code generation

We don’t even know the full
program source!!

Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:

• Must use FFI for speed
• Static analysis
• Cool optimizations can’t happen

t = ...;
for (i = 0; i < strlen(t); i++)
{

s[i] = t[i];
}

t = ...;
_temp = strlen(t);
for (i = 0; i < _temp; i++)
{

s[i] = t[i];
}

alert ($(’li’).get(0).nodeName);alert ($(’li’)[0].nodeName);

How not to Design a Scripting Language Paul Biggar

1. self-perpetuating
cycle

2. shame, scripting
languages could
really use static
analysis

3. high-level means
high level
optimizations? no

4. redundency
elimination - some
cant be done by
hand

So they can’t be compiled (ahead-of-time)
Downsides:

• Must use FFI for speed
• Static analysis
• Cool optimizations can’t happen

t = ...;
for (i = 0; i < strlen(t); i++)
{
s[i] = t[i];

}

t = ...;
_temp = strlen(t);
for (i = 0; i < _temp; i++)
{
s[i] = t[i];

}

alert ($(’li’).get(0).nodeName);alert ($(’li’)[0].nodeName);

Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:

• Must use FFI for speed
• Static analysis
• Cool optimizations can’t happen

t = ...;
for (i = 0; i < strlen(t); i++)
{

s[i] = t[i];
}

t = ...;
_temp = strlen(t);
for (i = 0; i < _temp; i++)
{

s[i] = t[i];
}

alert ($(’li’).get(0).nodeName);alert ($(’li’)[0].nodeName);

How not to Design a Scripting Language Paul Biggar

1. self-perpetuating
cycle

2. shame, scripting
languages could
really use static
analysis

3. high-level means
high level
optimizations? no

4. redundency
elimination - some
cant be done by
hand

So they can’t be compiled (ahead-of-time)
Downsides:

• Must use FFI for speed
• Static analysis
• Cool optimizations can’t happen

t = ...;
for (i = 0; i < strlen(t); i++)
{
s[i] = t[i];

}

t = ...;
_temp = strlen(t);
for (i = 0; i < _temp; i++)
{
s[i] = t[i];

}

alert ($(’li’).get(0).nodeName);alert ($(’li’)[0].nodeName);

Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:

• Must use FFI for speed
• Static analysis
• Cool optimizations can’t happen

t = ...;
for (i = 0; i < strlen(t); i++)
{

s[i] = t[i];
}

t = ...;
_temp = strlen(t);
for (i = 0; i < _temp; i++)
{

s[i] = t[i];
}

alert ($(’li’).get(0).nodeName);alert ($(’li’)[0].nodeName);

How not to Design a Scripting Language Paul Biggar

1. self-perpetuating
cycle

2. shame, scripting
languages could
really use static
analysis

3. high-level means
high level
optimizations? no

4. redundency
elimination - some
cant be done by
hand

So they can’t be compiled (ahead-of-time)
Downsides:

• Must use FFI for speed
• Static analysis
• Cool optimizations can’t happen

t = ...;
for (i = 0; i < strlen(t); i++)
{
s[i] = t[i];

}

t = ...;
_temp = strlen(t);
for (i = 0; i < _temp; i++)
{
s[i] = t[i];

}

alert ($(’li’).get(0).nodeName);alert ($(’li’)[0].nodeName);

Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:

• Must use FFI for speed
• Static analysis
• Cool optimizations can’t happen

t = ...;
for (i = 0; i < strlen(t); i++)
{

s[i] = t[i];
}

t = ...;
_temp = strlen(t);
for (i = 0; i < _temp; i++)
{

s[i] = t[i];
}

alert ($(’li’).get(0).nodeName);

alert ($(’li’)[0].nodeName);

How not to Design a Scripting Language Paul Biggar

1. self-perpetuating
cycle

2. shame, scripting
languages could
really use static
analysis

3. high-level means
high level
optimizations? no

4. redundency
elimination - some
cant be done by
hand

So they can’t be compiled (ahead-of-time)
Downsides:

• Must use FFI for speed
• Static analysis
• Cool optimizations can’t happen

t = ...;
for (i = 0; i < strlen(t); i++)
{
s[i] = t[i];

}

t = ...;
_temp = strlen(t);
for (i = 0; i < _temp; i++)
{
s[i] = t[i];

}

alert ($(’li’).get(0).nodeName);

alert ($(’li’)[0].nodeName);

Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:

• Must use FFI for speed
• Static analysis
• Cool optimizations can’t happen

t = ...;
for (i = 0; i < strlen(t); i++)
{

s[i] = t[i];
}

t = ...;
_temp = strlen(t);
for (i = 0; i < _temp; i++)
{

s[i] = t[i];
}

alert ($(’li’).get(0).nodeName);

alert ($(’li’)[0].nodeName);

How not to Design a Scripting Language Paul Biggar

1. self-perpetuating
cycle

2. shame, scripting
languages could
really use static
analysis

3. high-level means
high level
optimizations? no

4. redundency
elimination - some
cant be done by
hand

So they can’t be compiled (ahead-of-time)
Downsides:

• Must use FFI for speed
• Static analysis
• Cool optimizations can’t happen

t = ...;
for (i = 0; i < strlen(t); i++)
{
s[i] = t[i];

}

t = ...;
_temp = strlen(t);
for (i = 0; i < _temp; i++)
{
s[i] = t[i];

}

alert ($(’li’).get(0).nodeName);

alert ($(’li’)[0].nodeName);

Compiled and interpreted models

JIT compiled

Tracemonkey

http://hacks.mozilla.org/2009/07/tracemonkey-overview/

Type Analysis for Javascript

Simon Holm Jensen, Anders Møller and Peter Thiemann
SAS ’09
http://www.brics.dk/TAJS/

How not to Design a Scripting Language Paul Biggar

1. instead, they must
be JIT compiled.
We’ll still never get
cool optimizations

2. worse, the
research just gets
us, at run-time,
expensively,
information we
could get at
compile-time.

JIT compiled

Tracemonkey

http://hacks.mozilla.org/2009/07/tracemonkey-overview/

Type Analysis for Javascript

Simon Holm Jensen, Anders Møller and Peter Thiemann
SAS ’09
http://www.brics.dk/TAJS/

Compiled and interpreted models

JIT compiled

Tracemonkey

http://hacks.mozilla.org/2009/07/tracemonkey-overview/

Type Analysis for Javascript

Simon Holm Jensen, Anders Møller and Peter Thiemann
SAS ’09
http://www.brics.dk/TAJS/

How not to Design a Scripting Language Paul Biggar

1. instead, they must
be JIT compiled.
We’ll still never get
cool optimizations

2. worse, the
research just gets
us, at run-time,
expensively,
information we
could get at
compile-time.

JIT compiled

Tracemonkey

http://hacks.mozilla.org/2009/07/tracemonkey-overview/

Type Analysis for Javascript

Simon Holm Jensen, Anders Møller and Peter Thiemann
SAS ’09
http://www.brics.dk/TAJS/

Compiled and interpreted models

Fix at language design time

• No dynamic include; no eval.
• Compile-time meta-programming

• .rc files
• localization

How not to Design a Scripting Language Paul Biggar

1. do it like Perl, or
C++

Fix at language design time

• No dynamic include; no eval.
• Compile-time meta-programming

• .rc files
• localization

Compiled and interpreted models

Fix at language design time

• No dynamic include; no eval.
• Compile-time meta-programming
• .rc files

• localization

How not to Design a Scripting Language Paul Biggar

1. sandbox them

Fix at language design time

• No dynamic include; no eval.
• Compile-time meta-programming
• .rc files

• localization

Compiled and interpreted models

Fix at language design time

• No dynamic include; no eval.
• Compile-time meta-programming
• .rc files
• localization

How not to Design a Scripting Language Paul Biggar

1. With a compiled
model, we know all
the files

Fix at language design time

• No dynamic include; no eval.
• Compile-time meta-programming
• .rc files
• localization

Compiled and interpreted models

Doing it right

• Factor
• compiled model
• compile-time meta-programming
• declarative FFI

How not to Design a Scripting Language Paul Biggar

1. unfortunately
chose a paradigm
that nobody knows:
stack-based;
whoops!

Doing it right

• Factor
• compiled model
• compile-time meta-programming
• declarative FFI

Compiled and interpreted models

Open research problems

• Optimizing boxing
• High-level optimizations
• Combining ahead-of-time and JIT compilation

How not to Design a Scripting Language Paul Biggar

1. this is the shit we
should be
researching,
instead of finding
ways around
intracaible
problems

2. javascript 10px
3. table based
4. should be trivial

Open research problems

• Optimizing boxing
• High-level optimizations
• Combining ahead-of-time and JIT compilation

Compiled and interpreted models

Conclusion

Design the next scripting
language right

How not to Design a Scripting Language Paul Biggar

Conclusion

Design the next scripting
language right

	Introduction
	How not to design a scripting language
	FFI

