
Static analysis of dynamic scripting languages

Draft: Monday 17th August, 2009 at 10:29
Paul Biggar

Trinity College Dublin

pbiggar@cs.tcd.ie

David Gregg

Trinity College Dublin

david.gregg@cs.tcd.ie

Abstract

Scripting languages, such as PHP, are among the most widely used
and fastest growing programming languages, particularly for web
applications. Static analysis is an important tool for detecting se-
curity flaws, finding bugs, and improving compilation of programs.
However, static analysis of scripting languages is difficult due to
features found in languages such as PHP. These features include
run-time code generation, dynamic weak typing, dynamic aliasing,
implicit object and array creation, and overloading of simple oper-
ators. We find that as a result, simple analysis techniques such as
SSA and def-use chains are not straight-forward to use, and that
a single unconstrained variable can ruin our analysis. In this paper
we describe a static analyser for PHP, and show how classical static
analysis techniques can be extended to analyse PHP. In particular
our analysis combines alias analysis, type-inference and constant-
propagation for PHP, computing results that are essential for other
analyses and optimizations. We find that this combination of tech-
niques allows the generation of meaningful and useful results from
our static analysis.

1. Motivation

In recent years the importance of dynamic scripting languages —
such as PHP, Python, Ruby and Javascript — has grown as they
are used for an increasing amount of software development. Script-
ing languages provide high-level language features, a fast compile-
modify-test environment for rapid prototyping, strong integration
with database and web development systems, and extensive stan-
dard libraries. PHP powers many of the most popular web appli-
cations such as Facebook, Wikipedia and Yahoo. In general, there
is a trend towards writing an increasing amount of an application
in a scripting language rather than in a traditional programming
language, not least to avoid the complexity of crossing between
languages.

As scripting languages are used for more ambitious projects,
software tools to support these languages become increasingly im-
portant. Static analysis is an important technique that is widely used
in software tools for program understanding, detecting errors and
security flaws, code refactoring, and compilation. However, PHP
presents unique challenges to this analysis. In addition to highly
dynamic features, it has very complicated semantics, whose edge
cases combine in complex ways. It is dynamically typed, and pro-

[Copyright notice will appear here once ’preprint’ option is removed.]

grams provide no type- or alias-information to the analysis writer.
Worse, even simple statements can have hidden semantics which
must be modelled in order to allow conservative program analysis.

PHP’s complicated features include:

1. run-time source inclusion,

2. run-time code evaluation,

3. dynamic, weak, latent typing,

4. duck-typed objects,

5. implicit object and array creation,

6. run-time aliasing,

7. run-time symbol-table access,

8. overloading of simple operations.

Some of these features have been handled by earlier work. (1)
and (2) have been addressed by string analysis [29] and profiling
[11], early work [18] has been performed on alias analysis (6), and a
number of other problems (3, 8) have also been touched upon [30].
However, large sections of the PHP language are left unmodelled
by this previous work, including important cases relating to arrays,
and essential features such as object orientation.

In particular, it is notable that all previous analyses have been
non-conservative. Previous analyses have been aimed at bug-
finding, but their solution have not been suitable for purposes such
as compilation or optimization. This may be due to the difficulty
of providing a conservative analysis for PHP, which we believe we
are the first to do.

PHP’s feature set allows simple expressions to have hidden
effects based on a value’s run-time type. These hidden effects
are exacerbated by PHP’s run-time aliasing, and their detection
is hampered by PHP’s dynamic typing. Their presence makes it
very difficult to determine a simple list of definitions and uses of
variables within a function.

Let us consider an assumption made by earlier work [16, Sec-
tion VI.B], which does not perform type-inference or model PHP’s
weak typing and implicit array creation:1

if the expression $a[2] appears somewhere in the pro-
gram, then $a certainly is an array.

Unfortunately, this was untrue for their analysis on PHP4, and
is less true in PHP5. In a reading context, $a[2] may read from a
string, an array, an uninitialized variable or any other scalar value
(in which case it would evaluate to NULL). In the writing context, it
might write into a string, assign an array value or convert a NULL
value or uninitialized variable into an array. If $a was an int, real,
resource or bool, then the assignment would generate a run-time
warning, and the value would be unaffected. In PHP5, if $a was an

1 In PHP syntax, $a[2] indexes the value in the variable $a.

1 2009/8/17

object, then the get object handler would be called, if present, or
else there would be a run-time error.

It should be clear that many of PHP’s features make analysis dif-
ficult, and that traditional analyses are not adequate to analyse these
features. In addition, existing work on PHP omit many features of
PHP. In this paper we present novel and elegant abstractions and
extensions to traditional compiler analyses to enable these analy-
ses. Our analysis is whole-program, optionally flow- and context-
sensitive, and combines alias analysis, type-inference and constant-
propagation. It is an ambitious analysis which models almost2 the
entire PHP language. We believe we are the first to handle such a
large portion of the PHP language, as we are able to analyse a large
number of features which were not handled by previous analyses.

In Section 2, we present the semantics of PHP from the per-
spective of program analysis, particularly discussing features which
make analysis difficult. In Section 3 we discuss previous analyses
for PHP, and how their limitations prevent analyses of the whole
PHP language. We highlight areas where the unconventional se-
mantics of PHP have led to edge cases not modelled by previous
work, and how traditional analysis for C or Java is insufficient to
model PHP. In Section 4 we describe our novel analysis, how it
solves both the problems highlighted in Section 2, and the deficien-
cies in all previous work to date. Our experimental evaluation and
discussion is presented in Section 5.

2. PHP language behaviour

PHP has no formal semantics, no rigorous test suite, and an incom-
plete manual. As such, there is no definition of its semantics, except
for its reference implementation.3 We have previously described a
technique [3] for creating a compiler for such a language.

Although PHP is very different from languages like C, C++
and Java, there are a great deal of similarities to other scripting
languages such as such as Javascript, Lua, Perl, Python and Ruby.

PHP offers many language features which makes program anal-
ysis difficult. In order to prime the description of our analysis in
Section 4, we present first an informal description of the behaviour
of PHP 5. We have omitted behaviour which has no effect on pro-
gram analysis.

2.1 PHP Overview

PHP has evolved since its creation in 1995. It was originally created
as a domain specific language for templating HTML pages,4 which
was implemented in Perl. It is influenced by Perl, and has similar
syntax and semantics, including a latent, weak, dynamic type sys-
tem, powerful support for hashtables, and garbage collection. PHP
programs are typically web applications, and PHP is tightly inte-
grated with the web environment, including extensive support for
database, HTTP and string operations.

PHP 3 introduced simple class-based object orientation, which
used hashtables in its implementation. Since tables are copied dur-
ing assignment, syntax was introduced to allow variables to refer-
ence other variables, so as to pass arrays and objects to functions
and methods.

PHP 5 introduced a new object model, with new assignment
semantics for objects. This allowed object pointers to be copied
into new values, creating a second means of passing objects by
reference. However, the old reference semantics remain, and are
still required for passing arrays or scalars by reference.

2 See Section 4.9 for the limitations of our approach.
3 PHP’s reference implementation can be downloaded from http://

www.php.net.
4 PHP was originally named “Personal Home Page/Forms Interpreter”.

2.2 Dynamic typing

Typically, in statically-typed imperative languages such as C, C++
and Java, names are given to memory locations. Variables, fields
and parameters all have names, which typically correspond to space
on the stack or the heap. Each of these names is annotated with type
information, and this is statically checked.

PHP is instead dynamically typed, meaning type information is
part of a run-time value. The same variable or field may refer to
multiple run-time values over the course of a program’s execution,
and the types of these values may differ.

2.3 Arrays

Arrays in PHP are maps from integers or strings to values. The
same array can be indexed by both string and integer indices. Ar-
rays are not objects, and cannot have methods called on them. They
are implemented as hashtables in the reference implementation, and
we refer to them as tables from here-on-in.

Tables form the basis of a number of structures in PHP, includ-
ing objects and symbol-tables. Symbol-tables are a very interesting
case. PHP variables have subtle differences to languages like C,
where they represent stack slots. Instead PHP variables are fields
in global or local symbol-tables, which form a map of strings to
values.

PHP provides run-time access to symbol-tables. The $GLOBALS
variable provides access to any global variable by name. The lo-
cal symbol-table can be referenced using variable-variables. A
variable-variable is means of reading or writing a variable whose
name might only be known at run-time. Listing 1 demonstrates
reading and writing the variable $x. We note that the presence of a
run-time symbol-table becomes apparent due to variable-variables:
it is possible to read and write to variables which would violate
PHP’s syntax check.

$x = "old value";

$name = "x";

$$name = "new value";

print $x; // "new value"

Listing 1: Example of the use of variable-variables.

PHP’s built-in functions occasionally have access to the symbol-
table of their callers. compact and extract respectively read
and write from the caller’s symbol-table, bundling and unbundling
values from variables into arrays. The variables that are read and
written-to can be chosen based on dynamic values. A number of
other functions also write the the $php errormsg variable in
case of error.

The $GLOBALS variable, which points to the global symbol-
table,5 can be passed to array functions, iterated over, introspected
or cleared. In fact, the user can even unset the $GLOBALS variable
possibly, possibly preventing direct access from the user.

Many of the behaviours of arrays are shared by other features
which are implemented using arrays. For example, reading from
an uninitialized field in a PHP array will return NULL, and so
will reading an uninitialized value from a symbol-table as a result.
These behaviours are also shared by PHP’s objects.

2.4 Objects

PHP’s class system is a mishmash of other type systems. Unlike a
number of other scripting languages, there is a static class hierar-
chy. Once a class is declared its parent class cannot be changed, a
fact which simplifies analysis. In addition, classes may not change
their methods after they are declared. Similarly, once an object is

5 which holds the $GLOBALS variable...

2 2009/8/17

call
get
invoke
toString
set
isset

(a) Magic meth-
ods

call method
cast object
get
get constructor
get method
has dimension
has property
read dimension
read property
set
write dimension
write property

(b) C object handlers

Figure 1: Selection of object handlers.

instantiated it cannot change its class, and as a result its methods
may not be changed either.

Otherwise, PHP uses duck-typing [21]. Fields have no declared
type, and may be added and deleted from an object at any time.
As such a class does not denote a particular memory layout. Like
symbol-tables, the reference implementation implements objects
using tables, and the semantics reflect that. For example, an unini-
tialized field (that is, accessing a field of an object which does not
yet have that field) evaluates to NULL, just like arrays and symbol-
tables.

A simple class declaration and example is shown in Listing 2.
Note that the field num is not declared anywhere.

class MyInt {

function value () {

$this->num = rand ();

return $this->num;

}

}

$int = new MyInt(5);

$newint = $int->value ();

Listing 2: A simple class demonstrating field use without declaration.

Unlike arrays and symbol-table, objects have an extra layer of
magic, which was introduced in PHP5. An object’s class can define
methods to handle some operations. Figure 1a contains a selection
of allowed magic methods. get, set and isset are called
if inaccessible fields are accessed, call is called if inaccessible
methods are accessed and invoke is called upon an attempt to
invoke the object.

The toString method is of particular interest. Strings are
fundamental to PHP, and there are a large number of places in
which the toString method may be called, should an object
be passed instead of a string. Examples are the concatenation op-
erator (‘.’), interpolated variables in strings, printing, or using any
of PHP’s built-in functions which expect strings. We note that a
toStringmethod may be called from deep within an otherwise

opaque library, if the library expected strings passed to its interface.
A final layer of magic lurks behind the scenes. Many PHP

libraries are implemented using PHP’s C API [3]. Objects passed
to or from library functions may have special C object handlers.
These can be called in some circumstances in which magic methods
cannot — such as when the object is read or written to — or
accessed using array syntax. Figure 1b contains most of these
handlers. Typically, if defined, they replace the standard behaviour
of some PHP construct, for example accessing an object using the
array syntax (* dimension) or accessing fields (* property).

Since the libraries written using the C API may have access to
a large portion of the internals of the reference implementation, C
object handlers can in theory change anything.

2.5 References

A reference between two variables establishes a run-time alias,
where variables share the same value. This has strong similarities
to references in C++. However, PHP’s references are mutable —
they can be created, used, and destroyed again at run-time. Unlike
C pointers, a PHP reference is bidirectional, as there is only one
value being referred to by multiple names. These multiple names
may be passed widely throughout the program, and the same values
may be referenced by many names, including function parameters,
or field of objects or arrays, or symbol-tables entries.

1 function a() {

2 $a2 =& $GLOBALS['x1'];

3 if (...)

4 $a1 =& $a2;

5
6 b(&$a1, $a2);

7 }

8
9 function b($fp1, &$fp2) { ... }

10
11 a();

Listing 3: Example of dynamic aliasing in PHP. References creation can be
at run-time, and in some cases occurs conditionally. This is a combination
of Figures 7 and 8 from [18].

Listing 3 demonstrates PHP’s dynamic aliasing. On line 2, $a2
becomes a reference of $GLOBALS[’x1’], that is, the global
variable $x1. Line 4 shows the creation of a possible reference.

To complicate matters further, although a function may be de-
clared to take a parameter by reference, a caller may optionally also
pass its actual parameter by reference. Thus, either the callee or the
caller can specify that a parameter is passed by reference. Line 6
shows a call to the function b, where the first parameter is passed
by reference in the caller, and the second parameter is passed by
reference due to the signature on line 9.

2.6 Scalar values

PHP has the following scalar types: int, real, string, bool, resource
and null. It is not possible to add user-defined scalar types.

int and real are wrappers for the C types long and double. bool
is a simple boolean type which may be true or false. string is a
scalar type in PHP, as there is no character type for it to aggregate.
However, array syntax may be used to modify portions of a string,
complicating analysis of arrays.

Much of PHP’s standard library is written in C. A resource pro-
vides a way to wrap C pointers in user-code, after they are returned
from standard libraries. PHP user code cannot create resources, and
operations on them are largely not meaningful. Resources do not
otherwise affect our analysis, and so shall not be addressed further.

PHP’s NULL value closely resembles the unit value [22] in
Scheme. Scheme’s unit type has exactly one value, also called unit.
Similarly, PHP’s NULL type has exactly one value, also called
NULL. However, comparisons between PHP’s NULL and those of
other languages are muddied by PHP’s weak-typing.

PHP allows definitions of constant values, similar to C’s #define
construct. However, constants are dynamically defined in PHP, by
calls to the define function. As such, they are defined at run-
time, not compile-time. Although a constant may not change its
value once it is defined, a constant may be conditionally defined,
may be defined late in the program, or may be defined from a user
value. Constants may only be defined using scalar values.

3 2009/8/17

2.7 Weak typing

A major feature of PHP’s type system is that as well as being
dynamically typed, it is also weakly typed. That is, conversions
between types often happen automatically and behind the scenes.

This is due to PHP’s heritage, since it was originally designed
as a language for creating web applications. At the time, it was
useful to take strings directly from the user, as shown in Listing
4 and using them directly as other types. Though this practice is
frowned upon because of potential string injection vulnerabilities,
weak typing is still an integral part of the language.

if ($_GET["age"] > 25)

echo "...";

Listing 4: Example of weak typing. $ GET fetches a string value from the
user, whose integer value is compared with 25.

2.8 Type-coercion

PHP values can also be cast from one type to another explicitly by
the programmer. The PHP manual [25] goes into great detail about
the behaviour of casts. As such, we will only focus on those that
pertain to program analysis.

Casting a scalar to an array creates a new array containing that
scalar (using the key “scalar”). A cast to an object is similar, except
that the result is an object which is an instance of “stdClass”. The
exception to these rules is the NULL value, which is cast to an
empty structure. It is not possible to cast between object types (or
otherwise change the concrete type of an object), or from a scalar
to a particular object type.

Casting an object to a string will invoke the object’s toString

method, as discussed in Section 2.4.

2.9 Operators

There are two equality operators, == and ===. The former uses
weak rules, considering for example the integer 5 to be equal to the
string "5". The === operator is stricter, requiring the type of the
values to also be equal.

PHP has detailed rules on the weak equality of values, described
in the PHP manual. Many of these rules were collected by exper-
imentation on the existing behaviour in some version of PHP, but
they appear to be unchanged since their behaviour was first added
to the manual. An interesting property of the == operator is that
it is not transitive, as can be seen in Listing 5. Other comparison
operators, including arithmetic and bitwise operators, have similar
quirks.

print "zest" == 0; // true

print 0 == "eggs"; // true

print "zest" == "eggs"; // false

Listing 5: Example of intransitive equality operations.

2.10 Assignment

There are two forms of assignment in PHP. The most straightfor-
ward, denoted $a = $b, is an assignment by copy, which copies
the value into new memory. In Listing 6, $x is assigned the value
5, after which $x’s value is copied into $y. Consider the run-time
memory representation after the copy, shown in Figure 2a. As ex-
plained in Section 2.3, $x and $y are symbol-table entries, each of
which point to run-time values, each set to 5.

int *y = malloc(sizeof(int));

int *x = malloc(sizeof(int));

$x = 5; *x = 5;

$y = $x; *y = *x;

$y = 7; *y = 7;

Listing 6: Assignment by copy, with comparable C code.

(a) Assignment by copy (see
Listing 6).

(b) Assignment by reference (see
Listing 7).

Figure 2: PHP assignment memory representation.

Assignment by reference creates a reference between the two
variables, causing them to share a single value. In Listing 7, $x’s
value is shared by $y on line 3, and both $x and $y are defined on
line 4. Figure 2b shows the memory representation after line 4.

1 int *x = malloc(sizeof(int));

2 $x = 5; *x = 5;

3 $y =& $x; int *y = x;

4 $y = 7; *y = 7;

Listing 7: Assignment by reference, with comparable C code.

Assigning to an existing variable by reference removes it from
existing reference relationships. An assignment by copy to a vari-
able in a reference relationship changes the value of all variables it
references.

There is a subtle difference between copying an object and
using references. When copying an object between two values, both
variables have a separate value, both pointing to the underlying
object. By contrast, using references, both variables would share
the same value, which points to a single object. In contrast with
objects, arrays are deep copied.6

2.11 Implicit value creation

Certain assignment statements may have implicit effects, due to
PHP’s weak-typing. In Listing 8, $arr is uninitialized until line
3, when the assignment to $arr[0] converts $arr into an array.
Assignments using object field syntax convert uninitialized values
to objects of the class “stdClass”.

1 for ($i = 0; $i < 10; $i++)

2 {

3 $arr[$i] = $i;

4 }

Listing 8: An array implicitly created in a loop.

Arrays and objects are also implicitly created using references.
An uninitialized variable will be initialized to NULL if it is on the
RHS of a reference assignment. Referencing fields of arrays or
objects will likewise initialize the field. If the array or object itself
if not initialized, it too will be created.

2.12 Dynamic code generation

PHP has an eval statement which evaluations strings at run-time.
The strings may not be known at compile-time, and may even be
read from the user. Our analysis expects all code to be statically
known, and so we do not deal with this in our analysis. A number
of techniques [11, 29] exist to mitigate the pessimistic effects of
evals in static analyses.

6 The PHP reference implementation uses copy-on-write to prevent the cost
of these operations, but the semantics are still to copy. [28] presents a
problem with this implementation, and a solution. Copy-one-write does not
affect our analysis, and so we do not discuss it further.

4 2009/8/17

3. Existing PHP Static Analyses

There has been a significant amount of research into security anal-
ysis for PHP.

3.1 WebSSARI

Huang [13] performed the earliest work of which we are aware
on the analysis of PHP, using WebSSARI. However, we believe it
was a very early prototype which does not attempt to model PHP
very well. Xie [30, Section 5.1] discusses the limitations of Huang’s
work in some detail, noting especially that it is intraprocedural and
models only static types. As a result, we do not discuss it further.

3.2 Web vulnerabilities

Xie [30] models a great deal of the simple semantics of PHP5,
with the intention of detecting SQL injection vulnerabilities. They
model the extract function, automatic conversion of some scalar
types, uninitialized variables, simple tables, and include state-
ments. However, they do not discuss PHP’s complex object model
or references.

We note a simple misunderstanding of PHP’s semantics in Xie’s
work. In Section 3.1.4, they present the statement:

$hash = $_POST;

which they claim creates a symbol-table alias of $POST in
$hash. In fact this is a copy of the array in $ POST. It is notable
that earlier work has misunderstood the semantics of PHP, which
demonstrates the difficulty of analysing such a complex and under-
specified language.

3.3 Pixy

Pixy [18] provides an alias analysis for PHP 4. They correctly
identify that PHP’s reference semantics are difficult to model, and
that ignoring this feature can lead to errors in program analysis.
Their analysis is strongly focused on fixing this flaw.

A contribution of their work is the realization that previous alias
analyses [4, 10, 19] for Java, C or C++ are unsuitable for PHP. In
particular, PHP’s references are mutable, and are not part of the
static type of a variable.

Pixy’s major contribution is that they model PHP’s run-time ref-
erences between variables in different symbol-tables. Using alias-
pairs, they keep track, at each point in the program, of which vari-
ables may- or must-alias each other. This includes aliases between
variables in the global symbol-table, other symbol-tables, and for-
mal parameters.

There are some limitations with their approach. To begin with,
it is rather complicated, with different rules for aliases between two
globals, between two formal parameters, between a global variable
and a parameter, and between global variables and function-local
variables.

More importantly, the alias analysis in Pixy does not go far
enough. They do not model that aliases may also exist between
variables and members of an array.7 Unfortunately, this breaks
their shadow model [18, Section 4.4.4] which they use to handle
interprocedural analysis.

In our introduction, we highlighted shortcomings in Pixy’s lack
of type-inference. Pixy inferred that array syntax implied the pres-
ence of an array, which was not correct. In addition, they did not
propagate the information they did gain, which they refer to as the
problem of “hidden arrays”.

Finally, it is claimed that Pixy does not model a number of PHP
4 features:

• though they are aware of variable-variables, they do not men-
tion a way to model them,

7 or an object’s fields, but Pixy does not model objects.

• they cannot model assignments to the $GLOBALS variable,

• they do not model functions which affect the local symbol-table
(extract and compact),

• they do not model PHP4’s object oriented features.

Since their work is based on PHP4, they also do not model
PHP5’s new object model.

3.4 SQL injection attacks

In Wassermann [29] performed a security analysis on PHP pro-
grams, aimed at detecting SQL injection vulnerabilities. In [29,
Section 5.2], Wassermann details a number of limitations that led
to false positives. This included incomplete support for references,
and not tracking type conversions among scalar variables. This is
similar to the limitations the modelling of arrays in Pixy.

Furthermore, in [29, Section 3.1.1], it is mentioned that SSA
form is used. However, since there are a number of features in
PHP which can touch the local or global symbol-table, it is difficult
to obtain a conservative set of definitions and uses for a function.
In fact, as we show in Section 4.7, an advanced alias-analysis is
required to build a simple SSA form.

3.5 Unsuitability of alias analysis models for static languages

A traditional alias analysis for Java, C or C++ typically deals with
memory locations. For example the “points-to abstraction” [10]
computes the points-to relation between different stack locations.
This is used to model variables which are modified or used by a
statement (so-called mod-ref analysis [19] in C) to allow accurate
intraprocedural scalar optimizations.

Java has simpler reference semantics than PHP. All variables
and fields are scalars, and some values may be pointers, however
pointers to scalar values or to values on the stack are not permitted.

Listing 9 demonstrates references in C++. In it, we see a func-
tion caller which takes a parameter by reference. Its formal param-
eter fp is of type int-reference.

void x (int& fp);

Listing 9: Example of C++ references.

Throughout the lifetime of fp, it is known that:

1. fp is a reference,

2. fp references a variable which is reachable from outside the
scope of x.

More importantly, if the reference symbol was omitted, the
absence of these features is known. This is not the case in PHP,
where the caller may declare a parameter to be passed by-reference.

Most existing alias analyses are designed for the semantics of
Java, C and C++. They work well because they closely model those
semantics. However, since PHP’s semantics are only superficially
similar to those of Java, C and C++, alias analyses for these static
languages are largely not suitable. In particular, existing analyses:

• do not allow for modelling of variable-variables

• are not required to model dynamic effects, such as those relying
on type,

• are able to fall back on a static type system [9] in the conserva-
tive case,

• may rely on knowing the run-time structures of objects [5].

5 2009/8/17

4. Analysis

Based on the problems with previous analyses, and our experience
in compiling PHP in our previous work [3], our analysis has the
following major features.

• We model variables as symbol-table fields, making their rep-
resentation the same as for object fields and array indices. We
refer to these as names8 from here-on-in.

This allows us to model:

all tables using the same elegant abstraction,

variable-variables (in the symbol-table) and variable-fields
in the same way as array indices,

references between each kind of name, modeling many pro-
grams that Pixy cannot,

the structure of arrays and objects

implicit conversions of NULLs to arrays or objects.

• We perform type-inference simultaneously with alias-analysis,
constraining each name to a conservative set of types. This
allows us to:

analyse the program’s interprocedural data-flow through
polymorphic function calls,

model scalar operations, casts, and weak type conversions,

track calls to magic methods,

prove the absence of object handlers.

• We also propagate literals and constants at the same time.

• Finally, we use the analysis to conservatively model the defini-
tions and uses of names, which is otherwise not straightforward.

The combination of these features is powerful. Only by combin-
ing alias analysis, type inference and literal analysis are we able to
model types and references of a whole program. Combining them
also allows us to model assignments to known array indices, deter-
mine if a parameter is passed to a method by-copy or by-reference,
resolve many conditional statements, and enable a powerful SSA
form on which to base optimizations and further analyses.

Our analysis handles a large majority of PHP’s features, with
the exception of those listed in Section 4.9. As such, it is the first
analysis capable of being used for a conservative analysis of real
PHP programs.

4.1 Analysis overview

With these features in mind, we present an overview of our analy-
sis:

• Our analysis performs a symbolic execution of a PHP program,
in the same sense as Xie’s analysis [30]. We begin at the first
statement in the global scope, and perform our analysis one
statement at a time. At every statement, we model alias, type,
literal, constant and def-use information.

• Our analysis is flow- and context-sensitive, using Pioli’s [23]
algorithm. We use a worklist algorithm to keep track of the
statements in a program.9 Following Pioli, it is a conditional
analysis, meaning we attempt to resolve branch statements us-
ing our literal analysis. This results in an optimistic analysis,
which must complete in order for its results to be correct.

8 Xie uses the [30] term location, however, we may use multiple names for
the same run-time value, which is slightly different the traditional meaning.
9 Hind [12] process their worklist using topological ordering of the CFG.
Similarly, we do not process a statement from the worklist if a statement it
post-dominates remains to be processed.

• Upon reaching a method invocation, we halt processing of the
current method, copy necessary information to the callee (a
forward-bind [4]), and begin processing from the entry block
of the invoked method. We build our call-graph lazily, similar
to Emami [10] and Burke [4].

• When a method has been fully analysed, we copy information
back to the caller (a backward-bind [4]) and continue the algo-
rithm. If there are multiple possible receivers, we analyse each
receiver, and merge their results, before continuing through the
caller’s worklist.

• After the global scope is fully analysed, we merge the results
from each analysed context into a single result for each state-
ment in the program. We then apply our optimization passes,
and repeat the analysis until it converges.

4.2 Alias analysis

Our alias analysis is in amalgamation of ideas from previous work.
We use a points-to-graph, based on the Emami’s “points-to ab-
straction” [10]. We extend this by modelling objects and fields in
the manner of Choi’s escape analysis [5]. We model references sim-
ilarly to Pixy [18], but allow references between fields, variables
and array values. We use the flow-sensitive model and interproce-
dural analysis from Pioli [23], itself an extension of the work of
Burke [4]. Our context-sensitivity use a call-string approach [24].

Our alias analysis uses a points-to graph to represent the pro-
gram state. It contains three types of nodes:

• A storage node represents a table. All arrays, objects and
symbol-tables are represented using storage nodes.

• An index node represents a name, that is, a field of a table. It is
used to represent variables, object fields and array indices. Each
index node is a child of a single storage node.

• A value node represents a scalar value. A value node belongs
to a single index node, and is not shared between references.

There are three kinds of edges between nodes.

• A field edge is a directed edge from a storage node to an index
node.

• A value edge is a directed edge from an index node to a storage
or value node. If an index node has only one such edge, then the
edge’s target is its only possible value. Each index node must
have at least one outgoing value edge.

• A reference edge is a bidirectional edge between two reference
nodes, indicating that two index nodes reference each other. A
reference edge has a certainty and represents either a possible
reference or a definite reference (using terms from [10]); that
is, two names may-alias, or must-alias.

Each array or object allocated in the program is represented
by some storage node in the points-to graph. A number of other
program constructs require storage nodes:

• a storage node is added for the global symbol-table,

• each class requires a storage node for its static fields,

• a storage node is added for each called function’s local symbol-
table.

For each storage node in the program, we model an UNKNOWN
field, representing values for unknown names. These are most often
used for unknown array indices such as $arr[$f], but they also
model variable-variables and variable-fields. Both Jensen [15] and
Jang [14] include UNKNOWN nodes in their Javascript models.

6 2009/8/17

(a) Points-to graph for an assign-
ment by-copy from Listing 6.

(b) Points-to graph for a refer-
ence assignment from Listing 7.
The reference edge marked D

is a definite reference edge be-
tween $x and $y.

Figure 3: Points-to graphs, corresponding to the PHP run-time memory
models in Figure 2.

For assignments to names which are not statically known, the
unknown value is set, as is the value of every other index node in
the appropriate storage node(s). Reading from a statically unknown
name likewise reads from all possible fields of a storage node. If a
name is read which is not present in the points-to graph, the value
from the UNKNOWN node of the appropriate storage node(s) is
used instead. As such, an UNKNOWN node does not represent the
values of index nodes which are present in the storage node.

We use call-strings to name storage nodes [24] according to
their allocation sites. Each storage node may be concrete (it rep-
resents a single run-time structure) or abstract (it may represent
multiple run-time structures).

Some index nodes are eligible for strong updates, in which
they kill their previous value or reference relationship. A strong
update may be performed on an index node i if all of the following
conditions are true:

• i’s storage node is concrete,

• i is not an UNKNOWN node,

• i is the only index node referred to by access path of an assign-
ment (see Section 4.6).

At CFG join points, we merge points-to graphs from predeces-
sor basic blocks. We place an edge in the new points-to graph if
it exists in either graph. If a reference edge exists in both graphs,
then it is definite if it is definite in both graphs. In all other cases,
it is possible. If a value edge exists in one graph but not the other,
we must copy its UNKNOWN value, since it might have been as-
signed without our knowledge. This also deals with variables and
fields which are only initialized in one path, which is common, es-
pecially in the presence of loops. The only exception to this rules is
that if a storage node only exists in one graph, its index nodes are
copied directly, instead of being merged with NULL values.

4.2.1 Comparison to PHP memory model

The difference between the PHP run-time memory model and our
points-to graphs is demonstrated in Figure 3, corresponding to List-
ings 6 and 7. The PHP run-time memory model for these list-
ings is shown in Figure 2. For a simple assignment-by-copy, the
compile-time and run-time models are largely the same. However,
the difference is more visible in an assignment-by-reference. Our
points-to graph is required to model representations of the program
which cannot occur in practice, so it is slightly more general that
the memory representation. Since we model both may-aliases and
must-aliases, we are not able to simply use multiple value edges to
the same value to model references, as in the PHP run-time mem-
ory model. Instead, we are able to model this by using reference
edges between aliased index nodes. If we modelled the run-time

behaviour by simply sharing value and storage nodes, we would
only be able to model may-reference behaviour, resulting in a sig-
nificant loss of precision. We also use one value node per index
node, rather than sharing value nodes between references. If we
shared value nodes, then each may-definition (an assignment via a
may-reference) would need to be a weak update. Instead, this al-
lows the name being defined to perform a strong update, and only
its may-references are weak-updated.

1 $x = 5;

2 $y =& $x;

3 $w = array ();

4 $w[0] =& $x;

5 $w[1] = "str";

Listing 10: A short program with reference assignments and an array.

For a larger example, Figure 4b shows the points-to graph for
Listing 10. The corresponding run-time memory layout is shown in
Figure 4a.

At run-time, the symtable has three local variables, $w, $x and
$y. $w points to an array. $x and $y alias each other and also alias
the zero’th element of $w’s array. The array’s 1’th value is also
shown.

(a) Run-time memory representation

(b) Points-to graph. For simplicity, index nodes are shown within their
storage node, instead of using field edges. Edges marked D are definite
reference edges.

Figure 4: Memory layouts for Listing 10.

7 2009/8/17

int

VVVVVVVVVV bool
NNNN
real string

nn
nn

n

null

ffffffffffff

⊥

Figure 5: Our literal propagation semi-lattice.

4.3 Literal and type analysis

For each node in the alias analysis, we track information about its
literals and types.

We model literal values using a semi-lattice, as shown in Figure
5. At a CFG join point, the meet operation is performed, in which
two unequal values merge to ⊥.10

The reason we do not use a lattice is that uninitialized values in
PHP evaluate to NULL. At a CFG join point, a name with a value
(v1) may meet an uninitialized value (v2). If we used a lattice, the
meet of these two would be v1 instead of ⊥ (assuming that v1 is
not NULL. As such, a lattice topped with ⊤ would not be a correct
model. We note that Pixy [17] used a lattice, which may lead to
incorrectly propagated constants.

The value of the uninitialized name is not guaranteed to be
NULL, but instead takes its value from the UNKNOWN value of
the appropriate storage node. If the table does not exist, then the
uninitialized value is known to be NULL.

For each node in the points-to graph we model also a set of
types. Names with known values have the type of their value. Oth-
erwise, value nodes are permitted to have any scalar type. Storage
nodes are either “array”s for arrays and symbol-table, or the single
concrete type of an object. Index nodes use the set of the types of
all values to which they point. The meet operation for type sets is
set union.

For each constant defined in the program, we model its value,
if known. If a constant has not been defined, it will evaluate to
its name. Constants may only have scalar values, so unknown
constants have bounded types. Our analysis can call into the PHP
run-time [3], so we have automatic access to constants defined in
PHP’s standard library, which augments the results of our analysis.

4.4 Termination

We argue informally that our algorithm will terminate, outside the
presence of recursion. The semi-lattice is clearly bounded in depth,
so literals and constants will converge quickly. The set of types is
bounded to the number of types in the program. Since we require
all classes to be available at analysis time, this provides a bound on
the size of the sets.

Our alias analysis may add at most one storage node per context
in the analysis. The number of index nodes a storage node may
have is bounded by the number field/variable/array assignments
in the program. An assignment to an unknown index node will
use UNKNOWN. An assignment to an index node whose name is
derived by the literal analysis will converge as the literal analysis
does.

4.5 Modelling library functions and operators

PHP has a very large number of built-in and library functions,
which are written in C, and therefore not analyzable. The manual
documents over 5000 of these function. Since we are required to
know the types of a name at all times, we are required to model
these functions. We model three aspects:

parameters: Knowing whether a parameter must be passed by
reference simplifies analysis and generated code. We retrieve

10 We use ⊤ for uninitialized, and ⊥ for unknown.

this information automatically using our link to the PHP run-
time.

Some functions (typically string or array functions) alter the
values of their reference parameters. Modelling these functions
precisely can take a some time for the authors of the analysis,
so we typically model these conservatively.

A parameter which expects a string may be passed an ob-
ject with a toString magic method instead, which will be
called to evaluate to a string. As such, we model parameters to
indicate if they expect a string value. There might also be other
magic methods which could be handled in this way, but we have
only modelled toString for now.

return values: For most functions it is sufficient to model the type
of the return value, usually a small set of scalars. A large
number of functions return the value false in addition to their
intended type, to denote an error.

A small minority of functions return some array structure, such
as an array of strings. In those cases our model returns an array
with the appropriate structure.

purity: There are a large number of functions which are pure (side-
effect free). If we know the literal value of all parameters,
we may execute this function at compile-time, and return the
correct value. Again, this uses our link to the PHP run-time. We
use a short timeout for these function calls, but in practice the
time taken is negligible.

We also model operators in the same manner: executing them if
their operands are known, or modelling their result if it is not. In
most cases, the results of simple operands are not simple: the sum
of two integers may be a real, the product may be an integer, real
or the value false. The semantics of these operations were gleaned
from reading the source of the reference implementation — they are
not otherwise documented — and we regret not having the space to
document them further.

4.6 Access paths

Since the abstraction used for all tables in the program is the
same, we are able to map all assignments (lvalues) and expressions
(rvalues) to a traversal of the points-to graph. This mapping is
referred to as an access path [19].

An access path consists of a storage part and an index part,
representing the table being indexed, and its key. Consider a simple
assignment $l = $r[$f]. The lvalue is modelled as:

$l Z=⇒ ST → l; (1)

that is, $l maps to the local symbol-table indexed by the string
“l”. Both the storage and index parts can themselves be access
paths, required for array dereferences:

$r[$i] Z=⇒ (ST → r) → (ST → i) (2)

In this case, both the array and its index must be first be fetched
from the symbol-table. We would expect in general that $r will
find a storage node corresponding to an array, and the $i will find
a value node representing an integer or a string. Variable fields are
modelled the same way.

Variable-variables are modelled as

$$x Z=⇒ ST → (ST → x) (3)

while simpler array assignments are represented as

$r[0] Z=⇒ (ST → r) → 0 (4)

An access path evaluates to a list of index nodes. If the access
path represents an lvalue, the value of the index nodes is being set.

8 2009/8/17

If the path represents an rvalue, the value(s) of the index nodes will
be copied or referenced. The algorithm for converting an access
path to set of index nodes is straightforward:

• Each access path, where both the storage part s and the index
part i are named, is evaluated. It will correspond with a storage
node named s with a field named i.

• If the resolved access path p is part of another path p’, then the
values of the index nodes represented by p are used to resolve
p’.

• An access path with an unknown index will evaluate to every
possible index node of a storage node, including the UNKNOWN
index node.

4.7 Definitions, uses and SSA form

PHP’s syntax provides few clues as to the names which are defined
or used in a simple statement. Although aliases exist in more
traditional languages like C++, the mutability of PHP references
means we cannot make a conservative estimate of PHP’s def-use
chains [20]. In addition, features like variable-variables, functions
which affect the symbol-table of their callers, and object handlers
make any syntax based approach meaningless.

While performing the alias-analysis, we record in each state-
ment all names which are defined and used in that statement. We
use this to create an SSA form, which would otherwise be impossi-
ble to correctly build. The SSA form, based on HSSA [6], creates
a platform for further analysis and optimization, which can be built
without having to be integrated into the alias analysis. Using this,
we build a powerful aggressive dead-code elimination pass [27],
11 which is able to remove reference assignments and dead stores
in addition to standard scalar variables. We present results for this
analysis in Section 5.1.

The ability to delete reference assignments comes from our def-
use model. Each name may, in each statement, be defined, may-
defined12 or used, by reference or by value. For an assignment, $x
= $y:

1. $x is defined.

2. $x’s reference is used (by the assignment to $x).

3. for each alias $x’ of $x, $x’ is defined. If the alias is pos-
sible, it is may-defined instead of defined. In addition, $x’’s
reference is used.

4. $y is used.

5. $y’s reference is used.

For an assignment, $x =& $y:

1. $x is defined.

2. $x’s reference is defined (it is not used – $x does not maintain
its previous reference relationships).

3. $y is used.

4. $y’s reference is used.

We note that the other names referenced by $y do not need to be
used. Rather, their use can be surmised by traversing the reference
def-use chain starting at $y.

4.8 Practical Considerations

Our analysis is performed on a three-address-code (3AC) language.
The conversion to 3AC is straight-forward, but the presence of

11 By dead-code elimination, we mean useless code, not unreachable code
(although our analysis never analyses statically unreachable code).
12 The same could be said of uses, but it isn’t useful to do so.

dynamic references leads to some curiosities. Consider the example
in Listing 11. Its conversion to 3AC is syntactic, based on the
presence of the reference operator (&). However, in Listing 12, we
cannot convert the array expression to 3AC, as we do not know
if the parameter to foo is passed by value or reference. As such
we must add a param-is-ref construct, which evaluates at run-time
to a boolean indicating whether the n

th formal parameter of the
function to be called, requires passing by reference. This allows
parameters to be converted to 3AC. In general, we can resolve
this statically, but there are cases where this is not possible, such
as method dispatch where the possible receivers have different
signatures.

$x =& $a[0][1][2]; $T1 =& $a[0];

$T2 =& $T1[1];

$x =& $T2[2];

Listing 11: An array assignment, by reference, before and after conversion
to three-address code.

foo ($a[0][1]); if (param_is_ref (foo, 0)) {

$T1 =& $a[0];

$T2 =& $T1[1];

} else {

$T1 =& $a[0];

$T2 =& $T1[1];

}

foo ($T2);

Listing 12: A method invocation, by reference, before and after conversion
to three-address code.

4.9 Limitations

While we have modelled nearly the entire PHP language, our model
is incapable of expressing some parts of PHP. The eval statement
evaluates source code at run-time in the current scope. If we do
not know the value of the string beings evaluated, we are unable to
know anything about its effects, and our analysis would be forced
to return unknown for all names in the program. In practice, we stop
the analysis upon discovering an eval statement. Other analyses for
scripting languages have reported the same problem [15, 29]. Furr
et al have an interesting partial solution to this problem [11].

We have not modelled magic methods other than toString,
but we have instead chosen to prove their absence. We have also
chosen to prove the absence of object handlers, instead of mod-
elling them. An object handler is a property of an object, not a class,
and so our class based type-inference is slightly too weak to model
them. We believe it would not require a large addition, however.

We do not handle the $ SESSION variable correctly, modelling
it as an array of scalars. In practice, arrays and objects may be
persistent from one program iteration to the next. We believe we
can handle this by iterating over the other PHP scripts in the
application which may be setting this data, or with user annotations.
The former is similar to class analyses for C++ [8].

Functions and methods which are called incorrectly are not in-
voked, but instead return a NULL, after which the caller continues
executing. We have not modelled this.

We do not model error handling or exceptions. Both of these are
highly dynamic in PHP, and this is the most severe limitation of our
analysis.

We do not support dynamic class and method declarations, but
these were not intentionally used by program’s we have seen (they
appeared from include statements within functions).

We note some areas in which our analysis could be improved.
We can often say that a variable must be initialized (if it has a non-
NULL value), but we cannot say that it is not initialized.

9 2009/8/17

Name # scripts SLOC # statements
A U P U I P S A

RUBBoS 16 18 19 1597 2900 1597 3423 1001
RUBiS 19 20 21 1747 3868 2095 4435 1837
Eve 3 4 8 215 440 907 1473 306
Zend 12 14 14 421 421 421 1398 890
SQLiteAdmin 9 10 16 2791 12005 2915 2583 1212

Figure 6: Characteristics of analysed benchmarks.

5. Discussion

Our primary contributions are our informal description of PHP’s
behaviour, how it affects conservative program analysis, and how
to solve these problems in an static analysis for PHP. Our analy-
sis solves nearly all of the problems we have highlighted. In par-
ticular, we have solved many outstanding problems from previ-
ous research [18, 29, 30], including extending the alias analysis to
model PHP aggregate structures, modelling references between dif-
ferent sorts of names (fields, variables, etc), modelling def-use in-
formation suitable for SSA, proving the absence of some complex
object-oriented features and modelling implicit and weak type con-
versions. At the same time, we have presented an alias analysis
that extends both work from more static languages [4, 10, 12, 23]
and previous scripting language research [18] to fully model PHP’s
alias behaviour.

5.1 Experimental Evaluation

In this section, we provide an experimental evaluation of our re-
search, analysing a number of benchmarks, and comparing differ-
ent versions of our algorithm. We implemented our analysis in phc
[3, 7], our ahead-of-time compiler for PHP. phc is open-source,13

and the analysis algorithm is publicly available. We will soon re-
lease a new version of phc with the implemented analysis.

We analyse five publicly available PHP programs, including the
RUBBoS and RUBiS benchmark suites [2], the Zend benchmark
used to benchmark PHP’s reference implementation [26], and sev-
eral programs which were analysed in previous research (Eve Ac-
tivity Tracker 1.0 and phpSQLiteAdmin 0.2). We note that our anal-
ysis is performed once the program is installed, which often in-
cludes plugins and language packs. Previous analyses which were
non-conservative did not suffer this problem.

In Figure 6 we list statistics from the programs analysed. Each
program comprises a number of user-facing PHP scripts. Each user-
facing script requires the source of many backing scripts. Since we
analyse each script separately, we perform a pre-pass to include all
of the backing scripts code automatically.14

The scripts column lists the number of user-facing scripts (U),
the number those scripts we analysed15 (A), and the total number
of scripts in the package (P). The SLOC column lists the number
of source lines of code (SLOC) in analysed user-facing scripts (U),
the sum of the SLOC of those scripts after the inclusion pre-pass
(I), and the sum of the SLOC of each file in the package (P). The
statements column shows the number of static statements in the
program (S), and the number of statements in the program which
we traversed during analysis(A). All further figures are aggregated
over each analysed scripts in a test package.

We analyse each program four times, varying the context- and
flow-sensitivity. Our context-sensitive version uses an infinite call-
string, our insensitive version uses a call-string length of one (that
is, only a single statement ID is used in the name of the stor-

13 Available from http://www.phpcompiler.org.
14 Some programs were changed to make this straightforward, by changing
PHP constants to hard-coded strings. This did not change any program
semantics.
15 We skipped some scripts due to minor bugs.

5+

4

3

2

1

0

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

 1,800

 2,000

fc
i ci fi

fc
s

fc
i ci fi

fc
s

fc
i ci fi

fc
s

fc
i ci fi

fc
s

fc
i ci fi

fc
s

fci = flow− and context−insensitive

ci = context−insensitive

fi = flow−insensitive

fcs = flow− and context−sensitive

RUBBoS RUBiS phpSQLiteAdmin Eve Zend

Figure 7: Peak references per variable in the analysed benchmarks,
parametrised by flow- and context-sensitivity.

age node created). Our flow-sensitive version is described in the
previous section; our flow-insensitive version is simply the flow-
sensitive version, except we always perform weak updates instead
of strong updates. The # statements column in Figure 6 lists the
static number of three-address-code [20] statements in the program,
and the number of statements analysed in the flow-sensitive version
of our analysis (first context-insensitive, then context-sensitive).
We do not present the number of statements analysed in the flow-
insensitive version, since it is only an approximation of a true flow-
insensitive version.

We ran our analysis, followed by a number of optimizations
including constant propagation and folding, dead code elimination,
and removal of calls to pure or empty functions. We modelled 220
simple built-in PHP functions which required only the details in
Section 4.5, and 56 more complex functions.

Figure 7 presents the variables in a program, along with the
number of times they are aliased. Unaliased variables may fre-
quently be optimized much more heavily than aliased variables, by
putting them into registers, or performing the scalar replacement
of aggregates optimization [20]. The number of variables is lower
in the more precise versions of the program, principally due to dead
code elimination. For each variable in a function, we count the peak
number of aliases it has over its lifetime.

We see that the vast majority of variables in the program are
unaliased, and that it is largely invariant in the flow- and context-
sensitivity. It is clear that context-insensitivity increases aliasing
slightly, but not by a significant amount. We see also that flow- and
context-sensitivity generally decrease the number of variables in a
program with context-sensitivity being the more significant factor.
This is probably because more accurate context-sensitive analysis
leads to fewer abstract storage nodes, allowing for better constant
propagation.

Figure 8 shows a distribution of the number of types of variables
in a program. Statically knowing that a variable has only a single
type allows bug-finding tools to eliminate false positives, and al-
lows compilers to generate better code. A low number of static
types also has significant benefits for IDEs and code browsers,
which has been lacking for scripting languages.

For each variable in a function, we count the number of types it
has over its lifetime. This is performed after constant propagation,
and so does not include statements which can be optimized to take
a constant. Our results show that over 60% of variables in PHP
programs have a single known type, and 90% of variables have two
possible types or fewer, using flow- and context-sensitive analysis.

In our experience, many variable which have greater than one
type have a possible NULL value. This is particularly prevalent in
loops, where variables are often uninitialized on the first loop exe-

10 2009/8/17

5+

4

3

2

1

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

 1,800

 2,000

fc
i ci fi

fc
s

fc
i ci fi

fc
s

fc
i ci fi

fc
s

fc
i ci fi

fc
s

fc
i ci fi

fc
s

fci = flow− and context−insensitive

ci = context−insensitive

fi = flow−insensitive

fcs = flow− and context−sensitive

RUBBoS RUBiS phpSQLiteAdmin Eve Zend

Figure 8: Peak types per variable in the analysed benchmarks, parametrised
by flow- and context-sensitivity.

Branches Removed with DCE

Branches Replaced With Constants

Remaining Branches

 0

 50

 100

 150

 200

 250

 300

 350

fc
i ci fi

fc
s

fc
i ci fi

fc
s

fc
i ci fi

fc
s

fc
i ci fi

fc
s

fc
i ci fi

fc
s

fci = flow− and context−insensitive

ci = context−insensitive

fi = flow−insensitive

fcs = flow− and context−sensitive

RUBBoS RUBiS phpSQLiteAdmin Eve Zend

Figure 9: Branches removed in the analysed benchmarks, parametrised by
flow- and context-sensitivity.

cution, and have static types for the rest of the loop’s execution. We
speculate that unrolling the first loop iteration would be beneficial
in an optimizing compiler, which we intend to investigate in future
work. In addition, arithmetic operations and calls to built-in func-
tions rarely return a single type, with the former usually resulting in
the set (real, int), and the latter possibly returning false as well
as its intended value in many cases.

We believe these three cases account for a majority of variables
which have more than one type, and speculate that the program
is much more statically typed than our current results show. This
lends some credence to Huang’s [13] simple modelling of PHP
programs using static types, which it seems is acceptable in a pinch.

Figure 9 shows the number of branch statements in our program,
and the number that we are able to remove with optimization. The
peak in each column shows the sum of the number of branches at
the start of the program, and those created by small optimizations
which we have not discussed.16 Branches after optimization shows
the number of branches which remain after the analysis has con-
verged and all optimizations have been performed. The removed
branches are split into those removed by dead-code elimination
(Branches removed by DCE), and those where the branch direc-
tion is known (Branches replaced with constants). We can see
that flow-sensitive analysis gives better results, significantly bet-
ter in some cases, as might be expected. We note that our inter-
mediate representation does not typically create opportunities for
this optimization, except in the case of the param-by-ref construct,

16 These optimizations are the reason that the Zend results are not flat.

Statements Eliminated

Statements Remaining

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

 4,500

fc
i ci fi

fc
s

fc
i ci fi

fc
s

fc
i ci fi

fc
s

fc
i ci fi

fc
s

fc
i ci fi

fc
s

fci = flow− and context−insensitive

ci = context−insensitive

fi = flow−insensitive

fcs = flow− and context−sensitive

RUBBoS RUBiS phpSQLiteAdmin Eve Zend

Figure 10: Dead code eliminated in the analysed benchmarks, parametrised
by flow- and context-sensitivity.

which should be equally well known in both the flow-sensitive and
-insensitive cases.

Finally, we present the number of statements eliminated by
dead-code elimination in Figure 10. Our intermediate representa-
tion creates a very large number of opportunities for dead code.
Constants and literals are moved into variables during the creation
of 3AC, and param-is-ref statements are added. We see that a great
number of these statements are removed through analysis, in one
case over 70%.

A clear result of our analysis is the effectiveness of static analy-
sis for scripting languages. Though we have seen that the analysis
is typically much more difficult to perform than for more static lan-
guages, the results are excellent, with a very large number of stat-
ically typed variables, and a very low number of aliased variables.
IDEs in particular can gain a great deal of information from this
analysis. In addition, the optimization opportunities are clearly very
good, with large quantities of code removed, a majority of variables
which are unaliased, and a large number of variables which may
only be a single type over their life time.

We have seen many claims that just-in-time (JIT) compilers
are the only way forward for compilers for dynamic scripting lan-
guages. We believe that these preliminary results indicate other-
wise.

6. Related work

Our analysis is similar to that of Jensen et al [15]. They perform a
type analysis for Javascript, which has many of the same difficulties
as PHP, and come up with many similar solutions. Their lattice
models both types and literal values, they model default values for
missing properties, and they model the structure of objects using a
pointer analysis.

The differences between the two analyses stem largely from the
differences between the languages. While PHP has a static inher-
itance hierarchy, Javascript’s is dynamic, and their type analysis
attempts to model that finely. By contrast, Javascript does not have
PHP-like references. This is visible from their work: they discuss
points-to analysis only in passing, as existing solutions seem to sat-
isfy their need. In contrast, dynamic references are the main static
analysis challenge in PHP, and we use type inference and constant
propagation to support our alias analysis and improve its precision.

Jang [14] presents a points-to analysis for Javascript. Its primary
contribution is that it uses the same mechanism for array and
property accesses. They do not perform type inference, and their
pointer analysis is covered by Jensen’s work.

Although scripting languages are a departure from traditional
languages, they share many similarities with languages which have
been analysed before. The SELF project in particular has per-
formed important research on type-inference [1].

11 2009/8/17

7. Conclusion

Scripting languages have become some of the most widely used
programming languages, particularly for web development. The
dynamic features of scripting languages make static analysis very
challenging, particularly for PHP which has no documented seman-
tics outside the source code of its reference implementation. How-
ever, we have extensively documented PHP’s run-time behaviour,
how it affect program analysis, and in particular its difficult-to-
analyse features, for the first time.

We have developed a static analysis model for PHP that can
deal with dynamic language features such duck-typing, dynamic
and weak typing, overloading of simple operations, implicit object
and array creation and run-time aliasing. The main focus of our
work is alias analysis, but we show how type inference and constant
propagation must be used to perform the analysis effectively. We
also show how SSA form cannot be used without the presence of a
powerful alias analysis.

Our analysis has been implemented in the phc ahead-of-time
compiler for PHP, and used to analyse a number of real PHP
programs totalling 19684 lines of source code. We have found
that our analysis is able to determine that almost all variables are
unaliased. We are also able to statically determine the dynamic type
of 60% of variables in our test programs. Finally, we have provided
comparisons of context- and flow-sensitive and -insensitive variants
of our algorithm and find that both context- and flow-sensitivity are
valuable in increasing the accuracy of the analysis.

Acknowledgements

The authors are indebted to Irish Research Council for Science,
Engineering and Technology funded by the National Develop-
ment Plan, whose funding made this work possible. Jimmy Cleary
worked hard on the experiments, and this paper would not have
been complete without his help and dedication. ... provided valu-
able insights on a draft of this paper.

put in final list of acknowledgements

References

[1] O. Agesen. The cartesian product algorithm: Simple and precise type
inference of parametric polymorphism. In ECOOP ’95: Proceedings

of the 9th European Conference on Object-Oriented Programming,
pages 2–26. Springer-Verlag, 1995.

[2] C. Amza, A. Chanda, A. L. Cox, S. Elnikety, R. Gil, K. Rajamani,
and W. Zwaenepoel. Specification and implementation of dynamic
web site benchmarks. In In 5th IEEE Workshop on Workload

Characterization, pages 3–13, 2002.

[3] P. Biggar, E. de Vries, and D. Gregg. A practical solution for scripting
language compilers. In S. Y. Shin and S. Ossowski, editors, SAC,
pages 1916–1923. ACM, 2009.

[4] M. G. Burke, P. R. Carini, J.-D. Choi, and M. Hind. Flow-
insensitive interprocedural alias analysis in the presence of pointers.
In K. Pingali, U. Banerjee, D. Gelernter, A. Nicolau, and D. A. Padua,
editors, LCPC, volume 892 of Lecture Notes in Computer Science,
pages 234–250. Springer, 1994.

[5] J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P. Midkiff.
Stack allocation and synchronization optimizations for java using
escape analysis. ACM Trans. Program. Lang. Syst., 25(6):876–910,
2003.

[6] F. C. Chow, S. Chan, S.-M. Liu, R. Lo, and M. Streich. Effective
representation of aliases and indirect memory operations in ssa form.
In CC ’96: Proceedings of the 6th International Conference on

Compiler Construction, pages 253–267. Springer-Verlag, 1996.

[7] E. de Vries and J. Gilbert. Design and implementation of a PHP
compiler front-end. Dept. of Computer Science Technical Report
TR-2007-47, Trinity College Dublin, 2007.

[8] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In ECOOP ’95:

Proceedings of the 9th European Conference on Object-Oriented

Programming, pages 77–101. Springer-Verlag, 1995.

[9] A. Diwan, K. S. McKinley, and J. E. B. Moss. Type-based alias
analysis. In PLDI, pages 106–117, 1998.

[10] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function pointers.
In PLDI, pages 242–256, 1994.

[11] M. Furr, J. hoon (David) An, and J. S. Foster. Profile-guided
static typing for dynamic scripting languages. In OOPSLA ’09:

Proceedings of the 23rd ACM SIGPLAN conference on Object-

oriented programming systems languages and applications. ACM,
2009.

[12] M. Hind, M. Burke, P. Carini, and J.-D. Choi. Interprocedural pointer
alias analysis. ACM Trans. Program. Lang. Syst., 21(4):848–894,
1999.

[13] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y.
Kuo. Securing web application code by static analysis and runtime
protection. In S. I. Feldman, M. Uretsky, M. Najork, and C. E. Wills,
editors, WWW, pages 40–52. ACM, 2004.

[14] D. Jang and K.-M. Choe. Points-to analysis for javascript. In S. Y.
Shin and S. Ossowski, editors, SAC, pages 1930–1937. ACM, 2009.

[15] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for
JavaScript. In Proc. 16th International Static Analysis Symposium,

SAS ’09, volume 5673 of LNCS. Springer-Verlag, August 2009.

[16] N. Jovanovic. Web Application Security. PhD thesis, Technischen
Universitat Wien, 2007.

[17] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis
tool for detecting web application vulnerabilities. Technical report,
Vienna University of Technology, 2006.

[18] N. Jovanovic, C. Kruegel, and E. Kirda. Precise alias analysis for
static detection of web application vulnerabilities. In PLAS ’06:

Proceedings of the 2006 workshop on Programming languages and

analysis for security, pages 27–36. ACM, 2006.

[19] W. Landi and B. G. Ryder. A safe approximate algorithm for
interprocedural aliasing. SIGPLAN Not., 27(7):235–248, 1992.

[20] S. S. Muchnick. Advanced compiler design and implementation.
Morgan Kaufmann Publishers Inc., 1997.

[21] K. Ostermann. Nominal and structural subtyping in component-based
programming. Journal of Object Technology, 7(1):121–145, 2008.

[22] B. C. Pierce. Types and programming languages. MIT Press, 2002.

[23] A. Pioli, M. Burke, and M. Hind. Conditional pointer aliasing and
constant propagation. Master’s thesis, SUNY, New Paltz, 1999.

[24] M. Sharir and A. Pnueli. Two approaches to interprocedural data

flow analysis. Prentice Hall International, 1981.

[25] The PHP Documentation Group. PHP Manual, 1997-2009.
http://www.php.net/manual/.

[26] The PHP Group. Zend benchmark, 2007. http://cvs.php.

net/viewvc.cgi/ZendEngine2/bench.php?view=co.

[27] L. Torczon and K. Cooper. Engineering A Compiler. Morgan
Kaufmann Publishers Inc., 2007.

[28] A. Tozawa, M. Tatsubori, T. Onodera, and Y. Minamide. Copy-
on-write in the php language. In POPL ’09: Proceedings of the

36th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 200–212. ACM, 2009.

[29] G. Wassermann and Z. Su. Sound and precise analysis of web
applications for injection vulnerabilities. In PLDI ’07: Proceedings

of the 2007 ACM SIGPLAN conference on Programming language

design and implementation, pages 32–41. ACM Press, 2007.

[30] Y. Xie and A. Aiken. Static detection of security vulnerabilities in
scripting languages. In 15th USENIX Security Symposium,, pages
179–192, July 2006.

12 2009/8/17

