
On the use of SSA with Scripting Languages

Paul Biggar and David Gregg

Department of Computer Science and Statistics
Trinity College Dublin

Static Single-Assignment Form Seminar

Autrans, France

27th April, 2009

Trinity College Dublin 1

1. 18 min talking
2. 12 min questions
3. Scripting langs are

different
4. Plan: Start with

motivating example
5. Plan: Introduce

weirdness 1 step
at a time

On the use of SSA with Scripting Languages

Paul Biggar and David Gregg

Department of Computer Science and Statistics
Trinity College Dublin

Static Single-Assignment Form Seminar
Autrans, France

27th April, 2009

Motivating Example

1 function log ($printer, $prefix, $message) {

2 $fout = "$prefix: $message";

3 $printer->file_print ($fout);

4

5 $cout = "$prefix: $message"

6 $printer->console_print ($cout);

7 }

Trinity College Dublin 2

1. This PHP snippet
can be ’intuitively’
typed

Motivating Example

1 function log ($printer, $prefix, $message) {

2 $fout = "$prefix: $message";

3 $printer->file_print ($fout);

4

5 $cout = "$prefix: $message"

6 $printer->console_print ($cout);

7 }

In SSA

1 function log ($printer_0, $prefix_0, $message_0) {

2 $fout_0 = $prefix_0 . ": " . $message_0;

3 $printer_0->file_print ($fout_0);

4

5 $cout_0 = $prefix_0 . ": " . $message_0;

6 $printer_0->console_print ($cout_0);

7 }

Trinity College Dublin 3

1. Already in SSA -
only 1 assignment
to each var

In SSA

1 function log ($printer_0, $prefix_0, $message_0) {

2 $fout_0 = $prefix_0 . ": " . $message_0;

3 $printer_0->file_print ($fout_0);

4

5 $cout_0 = $prefix_0 . ": " . $message_0;

6 $printer_0->console_print ($cout_0);

7 }

Value numbering

1 function log ($printer_0, $prefix_0, $message_0) {

2 $fout_0 = $prefix_0 . ": " . $message_0;

3 $printer_0->file_print ($fout_0);

4

5 $printer_0->console_print ($fout_0);

6 }

Trinity College Dublin 4

Value numbering

1 function log ($printer_0, $prefix_0, $message_0) {

2 $fout_0 = $prefix_0 . ": " . $message_0;

3 $printer_0->file_print ($fout_0);

4

5 $printer_0->console_print ($fout_0);

6 }

Aliased parameters?

1 function log ($printer, $prefix, $message) {

2 ...

3 }

4

5 $p = new Printer;

6 log ($p, &$p->pre, &$p->mes);

Trinity College Dublin 5

Aliased parameters?

1 function log ($printer, $prefix, $message) {

2 ...

3 }

4

5 $p = new Printer;

6 log ($p, &$p->pre, &$p->mes);

References in PHP

Java style

Trinity College Dublin 6

1. Multiple names for
the same heap
object

2. Very simple to
convert into SSA -
the references
scalars

References in PHP

Java style

References in PHP

Java style

C++ style

Trinity College Dublin 6

1. Multiple names for
the same memory
location

2. No type
declarations or
signatures - differs
from C++

References in PHP

Java style

C++ style

References in PHP cont.

1 $y = 1;

2 if (...)

3 $x =& $y;

4 else

5 $x = $y;

6

7 $x = 5;

8 print $y;

Trinity College Dublin 7

1. PHP references
are run-time values

2. Symbol table
aliases

3. Can be references
at some point, and
non-refs at another
point - again,
unlike C++

References in PHP cont.

1 $y = 1;

2 if (...)

3 $x =& $y;

4 else

5 $x = $y;

6

7 $x = 5;

8 print $y;

Aliased parameters?

1 function log ($printer, $prefix, $message) {

2 ...

3 }

4

5 $p = new Printer;

6 log ($p, &$p->pre, &$p->mes);

Trinity College Dublin 8

1. Call-time
pass-by-ref

2. All parameters can
be call-clobbered

3. Cant tell absence
of aliasing

Aliased parameters?

1 function log ($printer, $prefix, $message) {

2 ...

3 }

4

5 $p = new Printer;

6 log ($p, &$p->pre, &$p->mes);

SSA + Alias analysis

What form of SSA to support alias analysis?

Trinity College Dublin 9

SSA + Alias analysis

What form of SSA to support alias analysis?

SSA + Alias analysis

What form of SSA to support alias analysis?

http://www.cs.man.ac.uk/~jsinger/ssa.html

Trinity College Dublin 9

SSA + Alias analysis

What form of SSA to support alias analysis?

http://www.cs.man.ac.uk/~jsinger/ssa.html

http://www.cs.man.ac.uk/~jsinger/ssa.html
http://www.cs.man.ac.uk/~jsinger/ssa.html

SSA + Alias analysis

What form of SSA to support alias analysis?

Dynamic Single Assignment

Paul Feautrier. Dataflow analysis of array and scalar

references. International Journal of Parallel Programming,

1991.

Trinity College Dublin 9

1. Not what I thought
it was

SSA + Alias analysis

What form of SSA to support alias analysis?

Dynamic Single Assignment

Paul Feautrier. Dataflow analysis of array and scalar

references. International Journal of Parallel Programming,

1991.

SSA + Alias analysis

What form of SSA to support alias analysis?

Dynamic Single Assignment
Cytron and Gershbein

Ron Cytron and Reid Gershbein. Efficient accommodation of

may-alias information in SSA form. PLDI 1993.

Trinity College Dublin 9

1. Not clear how it
works

2. Despite Singer’s
comment

SSA + Alias analysis

What form of SSA to support alias analysis?

Dynamic Single Assignment
Cytron and Gershbein

Ron Cytron and Reid Gershbein. Efficient accommodation of
may-alias information in SSA form. PLDI 1993.

SSA + Alias analysis

What form of SSA to support alias analysis?

Dynamic Single Assignment
Cytron and Gershbein
Extended SSA Numbering

Christopher Lapkowski and Laurie J. Hendren. Extended SSA

numbering: Introducing SSA properties to language with

multi-level pointers. Compiler Construction, 1998.

Trinity College Dublin 9

1. Unclear how to
modify SSA
algorithms

2. C++ references?
Designed for
multi-level pointers

SSA + Alias analysis

What form of SSA to support alias analysis?

Dynamic Single Assignment
Cytron and Gershbein
Extended SSA Numbering

Christopher Lapkowski and Laurie J. Hendren. Extended SSA

numbering: Introducing SSA properties to language with
multi-level pointers. Compiler Construction, 1998.

SSA + Alias analysis

What form of SSA to support alias analysis?

Dynamic Single Assignment
Cytron and Gershbein
Extended SSA Numbering
Extended Array SSA

Stephen Fink, Kathleen Knobe, and Vivek Sarkar. Unified

analysis of array and object references in strongly typed

languages. Static Analysis Symposium, 2000.

Trinity College Dublin 9

1. Requires strong
type information

SSA + Alias analysis

What form of SSA to support alias analysis?

Dynamic Single Assignment
Cytron and Gershbein
Extended SSA Numbering
Extended Array SSA

Stephen Fink, Kathleen Knobe, and Vivek Sarkar. Unified

analysis of array and object references in strongly typed

languages. Static Analysis Symposium, 2000.

SSA + Alias analysis

What form of SSA to support alias analysis?

Dynamic Single Assignment
Cytron and Gershbein
Extended SSA Numbering
Extended Array SSA
Hashed SSA

Fred C. Chow, Sun Chan, Shin-Ming Liu, Raymond Lo, and
Mark Streich. Effective representation of aliases and indirect

memory operations in SSA form. Compiler Construction, 1996.

Trinity College Dublin 9

1. Pedigree: SGI,
Mono, gcc

2. Worked on gcc
3. solves a lot of

problems
4. very readable
5. clear in what

problems is solves

SSA + Alias analysis

What form of SSA to support alias analysis?

Dynamic Single Assignment
Cytron and Gershbein
Extended SSA Numbering
Extended Array SSA
Hashed SSA

Fred C. Chow, Sun Chan, Shin-Ming Liu, Raymond Lo, and

Mark Streich. Effective representation of aliases and indirect

memory operations in SSA form. Compiler Construction, 1996.

What is HSSA?

Virtual variables

Trinity College Dublin 10

1. Massimiliano
Mantione will talk
about this
tomorrow

2. vars or sets of
aliases, or some
"name" ie heap
node

What is HSSA?

Virtual variables

What is HSSA?

Virtual variables

Mu: may-use

Trinity College Dublin 10

1. Massimiliano
Mantione will talk
about this
tomorrow

2. Annotates a
statement

What is HSSA?

Virtual variables

Mu: may-use

What is HSSA?

Virtual variables

Mu: may-use

Chi: may-def

Trinity College Dublin 10

1. Massimiliano
Mantione will talk
about this
tomorrow

What is HSSA?

Virtual variables

Mu: may-use

Chi: may-def

What is HSSA?

Virtual variables

Mu: may-use

Chi: may-def

Space efficient representation

Trinity College Dublin 10

1. Massimiliano
Mantione will talk
about this
tomorrow

2. GVN and zero
variables

What is HSSA?

Virtual variables

Mu: may-use

Chi: may-def

Space efficient representation

What is HSSA?

Virtual variables

Mu: may-use

Chi: may-def

Space efficient representation

Drop indices to get out of SSA

Trinity College Dublin 10

1. Massimiliano
Mantione will talk
about this
tomorrow

2. just drop chis, so
might lose info

What is HSSA?

Virtual variables

Mu: may-use

Chi: may-def

Space efficient representation

Drop indices to get out of SSA

What is HSSA?

Virtual variables

Mu: may-use

Chi: may-def

Space efficient representation

Drop indices to get out of SSA

Must be careful not to move copies across live ranges

Trinity College Dublin 10

1. Massimiliano
Mantione will talk
about this
tomorrow

2. ie during copy
propagation

What is HSSA?

Virtual variables

Mu: may-use

Chi: may-def

Space efficient representation

Drop indices to get out of SSA

Must be careful not to move copies across live ranges

Aliased parameters in SSA

1 function log ($printer_0, $prefix_0, $message_0) {

2 MU ($printer_0)

3 $fout_0 = $prefix_0 . ": " . $message_0;

4

5 $printer_0->file_print ($fout_0);

6 $printer_1 = CHI ($printer_0);

7 $prefix_1 = CHI ($prefix_0);

8 $message_1 = CHI ($message_0);

9 $fout_1 = CHI ($fout_0);

10

11 MU ($printer_1)

12 MU ($fout_1)

13 $cout_0 = $prefix_1 . ": " . $message_1;

14

15 $printer_0->console_print ($cout_0);

16 ...

17 }

Trinity College Dublin 11

1. No longer able to
due value
numbering
optimization from
before

2. If we want to do
any kind of value
propagation, we
have to be very
conservative

3. But, maybe we can
do something. fout
and cout are
touched in this
example, but there
will be others right?

Aliased parameters in SSA

1 function log ($printer_0, $prefix_0, $message_0) {

2 MU ($printer_0)

3 $fout_0 = $prefix_0 . ": " . $message_0;

4

5 $printer_0->file_print ($fout_0);

6 $printer_1 = CHI ($printer_0);

7 $prefix_1 = CHI ($prefix_0);

8 $message_1 = CHI ($message_0);

9 $fout_1 = CHI ($fout_0);

10

11 MU ($printer_1)

12 MU ($fout_1)

13 $cout_0 = $prefix_1 . ": " . $message_1;

14

15 $printer_0->console_print ($cout_0);

16 ...

17 }

Implication

Conservative SSA form is very pessimistic

Trinity College Dublin 12

Implication

Conservative SSA form is very pessimistic

Simpler?

1 function bastardized_mandel ($n)

2 {

3 for ($y = 0; $y <= $n; $y++)

4 {

5 $imc = 0.28 * ($y - 12);

6 for ($x = 0; $x <= 150; $x++)

7 {

8 $rec = 0.28 * ($x - 40) - 0.45;

9 $re = $rec;

10 $im = $imc;

11 $color = 10;

12 $re2 = $re * $re;

13 $im2 = $im * $im;

14 }

15 }

16 }
Trinity College Dublin 13

1. Outer loop of
something
involving
mandelbrot

2. everything is
dead!!

Simpler?

1 function bastardized_mandel ($n)

2 {

3 for ($y = 0; $y <= $n; $y++)

4 {

5 $imc = 0.28 * ($y - 12);

6 for ($x = 0; $x <= 150; $x++)

7 {

8 $rec = 0.28 * ($x - 40) - 0.45;

9 $re = $rec;

10 $im = $imc;

11 $color = 10;

12 $re2 = $re * $re;

13 $im2 = $im * $im;

14 }

15 }

16 }

C API handlers

read_property

read_dimension

get

set

cast_object

has_property

unset_property

...

Trinity College Dublin 14

1. get and set are
called when
reading or writing
values

2. Complete access
to interpreter
internals

3. No longer know
anything about
uses and defs

4. Completely
opaque to
source-level
compiler

C API handlers

read_property

read_dimension

get

set

cast_object

has_property

unset_property

...

Mandelbrot again

1 function bastardized_mandel ($n)

2 {

3 $y = 0;

4

5 while (1)

6 {

7 if ($y > $n)

8 break;

9

10 $imc = 0.28 * ($y - 12);

11 ...

12 $y++;

13 }

14 }

15

16 bastardized_mandel (extension_function ());

Trinity College Dublin 15

1. simplified further
2. read $n on line 7:

get handler!!
3. $y might not even

be zero on first
iteration

Mandelbrot again

1 function bastardized_mandel ($n)

2 {

3 $y = 0;

4

5 while (1)

6 {

7 if ($y > $n)

8 break;

9

10 $imc = 0.28 * ($y - 12);

11 ...

12 $y++;

13 }

14 }

15

16 bastardized_mandel (extension_function ());

Mandelbrot in SSA

1 function bastardized_mandel ($n_0)

2 {

3 $y_0 = 0;

4

5 $y_1 = PHI ($y_0, $y_X)

6 $n_1 = PHI ($n_0, $n_X)

7 while (1)

8 {

9 $y_2 = CHI ($y_1);

10 if ($y_2 > $n_1)

11 break;

12

13 $imc_1 = CHI ($imc_0);

14 $imc_1 = 0.28 * ($y_2 - 12);

15 $y_3 = CHI ($y_2);

16 $imc_2 = CHI ($imc_1);

17

18 ...

19 }

20 }

21
Trinity College Dublin 16

1. simplified further
2. read $n on line 7:

get handler!!
3. $y might not even

be zero on first
iteration

4. CHI must now go
between the read
of $n and the read
of $y

5. Even working out
the example is
head-wrecking

6. Cant kill anything

Mandelbrot in SSA

1 function bastardized_mandel ($n_0)

2 {

3 $y_0 = 0;

4

5 $y_1 = PHI ($y_0, $y_X)

6 $n_1 = PHI ($n_0, $n_X)

7 while (1)

8 {

9 $y_2 = CHI ($y_1);

10 if ($y_2 > $n_1)

11 break;

12

13 $imc_1 = CHI ($imc_0);

14 $imc_1 = 0.28 * ($y_2 - 12);

15 $y_3 = CHI ($y_2);

16 $imc_2 = CHI ($imc_1);

17

18 ...

19 }

20 }

21

22 bastardized_mandel (extension_function ());

Unknown types propagate

local symbol table

global symbol table

return values

reference parameters

callee parameters

Trinity College Dublin 17

1. Single unknown
type - may as well
give up

Unknown types propagate

local symbol table

global symbol table

return values

reference parameters

callee parameters

Implication

Def-use chains cannot be trivially obtained without
analysis

even for scalars!!

Trinity College Dublin 18

Implication

Def-use chains cannot be trivially obtained without
analysis

even for scalars!!

SSA in phc

Intra-procedural (only) analysis

Trinity College Dublin 19

1. Perhaps with
TBAA or ATAA

SSA in phc

Intra-procedural (only) analysis

SSA in phc

Intra-procedural (only) analysis

Derive def-use chains from whole-program analysis

Trinity College Dublin 19

SSA in phc

Intra-procedural (only) analysis

Derive def-use chains from whole-program analysis

SSA in phc

Intra-procedural (only) analysis

Derive def-use chains from whole-program analysis

Abstract Execution / Interpretation
Points-to analysis
Conditional Constant-propagation
Type-inference

Conditional Pointer Aliasing and Constant Propagation.

Anthony Pioli. MS Thesis, SUNY at New Paltz Technical Report

#99-102, January 1999.

Trinity College Dublin 19

1. Simultaneously

SSA in phc

Intra-procedural (only) analysis

Derive def-use chains from whole-program analysis

Abstract Execution / Interpretation
Points-to analysis
Conditional Constant-propagation
Type-inference

Conditional Pointer Aliasing and Constant Propagation.

Anthony Pioli. MS Thesis, SUNY at New Paltz Technical Report

#99-102, January 1999.

Benefits of SSA

End-to-end compiler IR

Trinity College Dublin 20

1. Fabrice mentioned
this earlier RE
book

Benefits of SSA

End-to-end compiler IR

Benefits of SSA

End-to-end compiler IR

Sparse propagation framework

Trinity College Dublin 20

1. Have to do them
first

Benefits of SSA

End-to-end compiler IR

Sparse propagation framework

Benefits of SSA

End-to-end compiler IR

Sparse propagation framework

Sparse analysis framework (execution-time)

Trinity College Dublin 20

Benefits of SSA

End-to-end compiler IR

Sparse propagation framework

Sparse analysis framework (execution-time)

Benefits of SSA

End-to-end compiler IR

Sparse propagation framework

Sparse analysis framework (execution-time)

Sparse representation (memory usage)

Trinity College Dublin 20

Benefits of SSA

End-to-end compiler IR

Sparse propagation framework

Sparse analysis framework (execution-time)

Sparse representation (memory usage)

Open research problem (I think)

Perform analyses on “SSA” while building SSA

Integrate SSA building into the abstract execution
Intuitively might be possible.

Trinity College Dublin 21

Open research problem (I think)

Perform analyses on “SSA” while building SSA

Integrate SSA building into the abstract execution
Intuitively might be possible.

Misc

Userspace handlers - syntax hides function calls.

Trinity College Dublin 22

1. Not like operator+
in C++

Misc

Userspace handlers - syntax hides function calls.

Misc

Userspace handlers - syntax hides function calls.

Renaming not possible

Trinity College Dublin 22

1. Must drop indices -
which is relatively
convenient due to
HSSA

Misc

Userspace handlers - syntax hides function calls.

Renaming not possible

Summary

SSA is hard in scripting languages

Perform propagation algorithm and alias analysis before

SSA construction

Can still use SSA for other analyses

Trinity College Dublin 23

Summary

SSA is hard in scripting languages

Perform propagation algorithm and alias analysis before

SSA construction

Can still use SSA for other analyses

Thanks

Thanks

Q.

What else am I an expert in?

A.

Um, I suppose, maybe, scripting languages?

Compiler research landscape

(Informal) Semantics

Optimization and analysis techniques

Trinity College Dublin 24

Thanks

Thanks

Q.

What else am I an expert in?

A.

Um, I suppose, maybe, scripting languages?

Compiler research landscape

(Informal) Semantics

Optimization and analysis techniques

